Skip to main content

Thermal Evolution Models

  • Chapter
  • First Online:
Hadean Earth
  • 1073 Accesses

Abstract

The study of Earth as an object whose history can be understood by application of physical laws dates back 200 years. This tradition is, however, rife with missteps related to as yet undiscovered physics or fundamentally incorrect assumptions. While the former is unavoidable, the latter amounts to self-inflicted wounds that may have forestalled scientific progress. Even in the absence of knowledge of initial conditions, linear mathematical relationships such as first order loss (e.g., radioactive decay) have proved useful in predicting Hadean conditions. However, more complex physical systems cannot be uniquely extrapolated back in time. For example, mantle convection, a highly non-linear, dispersive, chaotic system is, by its very nature, uninvertible. This fact has not inhibited generations of modeler’s from making ab initio predictions regarding early Earth evolution. Their results were initially limited by technological impediments and adoption of assumptions regarding the relationship between interior temperature and planetary heat loss that narrowed possible solutions. Radically new proposals regarding both the latter issue and discontinuous transitions between modes of heat loss have tempered earlier conclusions that plate-tectonic-like behavior could not arise on early Earth. Physical calculations have an important role to play in assessing the plausibility of Hadean geodynamic models, but should best be seen as “convenient fictions”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is this equation, rewritten in terms of t, that permits us to calculate an age from knowledge of D/P.

  2. 2.

    heat flux = −K ∂T/∂x, where K is thermal conductivity, T is temperature, and x is depth.

  3. 3.

    Stagnant lid tectonics arises on a convecting planet with an unbroken lithosphere. Since planetary heat can only be lost by conduction through the ‘lid’, the interior warms.

  4. 4.

    Although an unorthodox view now, the idea that Earth’s interior has warmed was relatively popular in the first half of the twentieth century (e.g., Bowen 1928; Slichter 1941).

  5. 5.

    https://en.wikipedia.org/wiki/Moore%27s_law.

References

  • Arevalo, R., McDonough, W. F., & Luong, M. (2009). The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters, 278, 361–369.

    Article  Google Scholar 

  • Arevalo, R., McDonough, W. F., Stracke, A., Willbold, M., Ireland, T. J., & Walker, R. J. (2013). Simplified mantle architecture and distribution of radiogenic power. Geochemistry, Geophysics, Geosystems, 14, 2265–2285.

    Article  Google Scholar 

  • Becquerel, H. (1896). On the rays emitted by phosphorescence. Compt. Rend. Hebd. Seances Acad. Sci., 122, 420–421.

    Google Scholar 

  • Bedini, R. M., Blichert-Toft, J., Boyet, M., & Albarède, F. (2004). Isotopic constraints on the cooling of the continental lithosphere. Earth and Planetary Science Letters, 223, 99–111.

    Article  Google Scholar 

  • Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. The Astrophysical Journal Supplement Series, 208(20), 1–54.

    Google Scholar 

  • Bowen, N. L. (1928). Evolution of igneous rocks. Princeton University Press.

    Google Scholar 

  • Box, G. E., & Draper, N. R. (1987). Empirical model-building and response surfaces. Wiley.

    Google Scholar 

  • Boyet, M., & Carlson, R. W. (2006). A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth and Planetary Science Letters, 250, 254–268.

    Article  Google Scholar 

  • Burchfield, J. D. (1975). Lord Kelvin and the age of the Earth. London: Macmillan.

    Book  Google Scholar 

  • Cameron, A. G. W. (1962). The formation of the sun and planets. Icarus, 1, 13–69.

    Article  Google Scholar 

  • Chamberlin, T. C. (1899). Lord Kelvin’s address on the age of the earth as an abode fitted for life. Science, 9, 889–901.

    Article  Google Scholar 

  • Christensen, U. R. (1985). Thermal evolution models for the Earth. Journal of Geophysical Research, 90, 2995–3007.

    Article  Google Scholar 

  • Christensen, U. R., & Hofmann, A. W. (1994). Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research, 99, 19867–19884.

    Article  Google Scholar 

  • Cloud, J. (1818). An attempt to ascertain the fusing temperature of metals. Transactions of the American Philosophical Society, 1, 167–169.

    Article  Google Scholar 

  • Davies, G. F. (1980). Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. Journal of Geophysical Research: Solid Earth, 85, 2517–2530.

    Article  Google Scholar 

  • Davies, G. F. (1992). On the emergence of plate tectonics. Geology, 20, 963–966.

    Article  Google Scholar 

  • Davies, G. F. (2002). Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochimica et Cosmochimica Acta, 66, 3125–3142.

    Article  Google Scholar 

  • Davies, G. F. (2006). Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth and Planetary Science Letters, 243, 376–382.

    Article  Google Scholar 

  • DePaolo, D. J. (1981). Nd isotopic studies: Some new perspectives on Earth structure and evolution. Eos, Transactions American Geophysical Union, 62, 137–137.

    Google Scholar 

  • de Buffon, G. L. L. “Count”. (1778). Histoire Naturelle, Générale et Particulière. Supplément, Tome Cinquième. L’Imprimerie Royale, Paris, pp. 615 + 8 + 23.

    Google Scholar 

  • Dubuffet, F., Yuen, D. A., & Rabinowicz, M. (1999). Effects of a realistic mantle thermal conductivity on patterns of 3-D convection. Earth and Planetary Science Letters, 171, 401–409.

    Article  Google Scholar 

  • Forsyth, D., & Uyeda, W. S. (1975). On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 4, 163–200.

    Article  Google Scholar 

  • Fourier, J. B. J. (1820). Extrait d’un mémoire sur le refroidissement séculaire du globe terrestre. Bulletin des Sciences par la Société Philomathique de Paris, Ser., 3, 58–70.

    Google Scholar 

  • Gamow, G. (1947). One Two Three Infinity: Facts and Speculations of Science. Courier Corporation.

    Google Scholar 

  • Gerya, T. V. (2014). Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth and Planetary Science Letters, 391, 183–192.

    Article  Google Scholar 

  • Gold, T. (1987) Power From the Earth: Deep Earth Gas—Energy for the Future, London, Dent and Sons.

    Google Scholar 

  • Hansen, U., Yuen, D. A., Kroening, S. E., & Larsen, T. B. (1993). Dynamical consequences of depth-dependent thermal expansivity and viscosity on mantle circulations and thermal structure. Physics of the Earth and Planetary Interiors, 77, 205–223.

    Article  Google Scholar 

  • Harrison, T. M. (1987). Comment on “Kelvin and the age of the earth”. Journal of Geology, 95, 725–727.

    Article  Google Scholar 

  • Heaviside, O. (1899). Electromagnetic theory (Vol. II). New York: Van Nostrand.

    Google Scholar 

  • Heirtzler, J. R., & Le Pichon, X. (1965). Crustal structure of the mid-ocean ridges: 3. Magnetic anomalies over the mid-Atlantic ridge. Journal of Geophysical Research, 70, 4013–4033.

    Article  Google Scholar 

  • Herzberg, C., Condie, K., & Korenaga, J. (2010). Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292, 79–88.

    Article  Google Scholar 

  • Hynes, A. (2013). How feasible was subduction in the Archean? Canadian Journal of Earth Sciences, 51, 286–296.

    Article  Google Scholar 

  • Jeffreys, H. (1924). The Earth. Its origin, history and physical constitution. Cambridge University Press.

    Google Scholar 

  • Kelvin. (1899). The age of the earth as an abode fitted for life. Science, 9, 665–674 and 704–711.

    Google Scholar 

  • Korenaga, J. (2003). Energetics of mantle convection and the fate of fossil heat. Geophysical Reseach Letters, 30, 1437.

    Google Scholar 

  • Korenaga, J. (2006). Archean geodynamics and the thermal evolution of Earth. In K. Benn, J. -C. Mareschal, & K. Condie (Eds.) Archean Geodynamics and Environments (vol. 164, pp. 7–32). AGU Geophysical Monograph Series.

    Google Scholar 

  • Korenaga, J. (2011). Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. Journal of Geophysical Research, 116, B12403.

    Article  Google Scholar 

  • Korenaga, J. (2016). Can mantle convection be self-regulated? Science Advances, 2(8), e1601168.

    Google Scholar 

  • Korenaga, J. (2017). Pitfalls in modeling mantle convection with internal heat production. Journal of Geophysical Research: Solid Earth, 4064–4080. https://doi.org/10.1002/2016jb013850.

  • Lenardic, A., & Kaula, W. M. (1993). A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces. Journal of Geophysical Research: Solid Earth, 98, 8243–8260.

    Google Scholar 

  • Lyubetskaya, T., & Korenaga, J. (2007). Chemical composition of Earth’s primitive mantle and its variance: 1 Method and results. Journal of Geophysical Research, 112, B03211. https://doi.org/10.1029/2005JB004223.

    Article  Google Scholar 

  • McKenzie, D., & Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625–679.

    Article  Google Scholar 

  • Moore, W. B., & Lenardic, A. (2015). The efficiency of plate tectonics and nonequilibrium dynamical evolution of planetary mantles. Geophysical Research Letters, 42, 9255–9260.

    Article  Google Scholar 

  • Moore, W. B., & Webb, A. A. G. (2013). Heat-pipe Earth. Nature, 501, 501–505.

    Article  Google Scholar 

  • Nakagawa, T., & Tackley, P. J. (2004). Effects of a perovskite–postperovskite phase change near core-mantle boundary in compressible mantle convection. Geophysical Research Letters, 31, L16611. https://doi.org/10.1029/2004GL020648.

    Article  Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the Earth sciences. Science, 263, 641–646.

    Article  Google Scholar 

  • Perry, J. (1895a). On the age of the earth. Nature, 51, 224–227.

    Article  Google Scholar 

  • Perry, J. (1895b). On the age of the earth. Nature, 51, 341–342.

    Article  Google Scholar 

  • Perry, J. (1895c). The age of the earth. Nature, 51, 582–585.

    Article  Google Scholar 

  • Richter, F. M. (1986). Kelvin and the age of the earth. Journal of Geology, 94, 395–401.

    Article  Google Scholar 

  • Richter, F. M., & McKenzie, D. P. (1978). Simple plate models of mantle convection. Journal of Geophysics, 44, 441–471.

    Google Scholar 

  • Richter, F. M., & McKenzie, D. P. (1981) On some consequences and possible causes of layered mantle convection. Journal of Geophysical Research: Solid Earth, 86, 6133–6142.

    Google Scholar 

  • Rutherford, E. (1905). Radio-activity (p. 580). Cambridge University Press.

    Google Scholar 

  • Safronov, V. S. (1958). On the growth of terrestrial planets. Vopr. Kosmog., Akad. Nauk S.S.S.R. 6, 63–77.

    Google Scholar 

  • Schubert, G., Stevenson, D., & Cassen, P. (1980). Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. Journal of Geophysical Research, 85, 2531–2538.

    Article  Google Scholar 

  • Sclater, J., Jaupart, C., & Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics, 18, 269–311.

    Article  Google Scholar 

  • Sharpe, H. N., & Peltier, W. R. (1978). Parameterized mantle convection and the Earth’s thermal history. Geophysical Research Letters, 5, 737–740.

    Article  Google Scholar 

  • Sizova, E., Gerya, T., Stüwe, K., & Brown, M. (2015). Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Research, 271, 198–224.

    Article  Google Scholar 

  • Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. Journal of Geophysical Research, 105, 17563–17578.

    Article  Google Scholar 

  • Sleep, N. H., Zahnle, K. J., & Lupu, R. E. (2014). Terrestrial aftermath of the Moon-forming impact. Philosophical Transactions of the Royal Society A, 372, 20130172.

    Article  Google Scholar 

  • Slichter, L. B. (1941). Cooling of the Earth. Bulletin of the Geological Society of America, 52, 561–600.

    Article  Google Scholar 

  • Smith, J. V. (1981). The first 800 million years of earths history. Philosophical Transactions of the Royal Society London Ser. A 301, 401–422.

    Google Scholar 

  • Solomatov, V. S. (1995). Scaling of temperature-and stress-dependent viscosity convection. Physics of Fluids, 7, 266–274.

    Article  Google Scholar 

  • Solomatov, V. S. (2007). Magma oceans and primordial mantle differentiation. In G. Schubert (Ed.), Treatise on Geophysics 9 (pp. 91–120). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Physics of the Earth and Planetary Interiors, 19, 168–182.

    Article  Google Scholar 

  • Stern, R. J., Gerya, T., & Tackley, P. J. (2017). Tackling unanswered questions on what shapes Earth. Eos 98. https://doi.org/10.1029/2017EO065791.

  • Stevenson, D. J. (1983). The nature of the earth prior to the oldest known rock record-The Hadean earth. Earth’s earliest biosphere: Its origin and evolution (pp. 32–40). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Stewart, C. A., & Turcotte, D. L. (1989). The route to chaos in thermal convection at infinite Prandtl number: 1. Some trajectories and bifurcations. Journal of Geophysical Research: Solid Earth, 94, 13707–13717.

    Article  Google Scholar 

  • Strutt, R. J. (1906). On the distribution of radium in the earth’s crust and on the earth’s internal heat. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 77A, 472–485.

    Google Scholar 

  • Thomson, W. (1863). On the secular cooling of the earth. Philosophical Magazine Series, 4(25), 1–14.

    Article  Google Scholar 

  • Tozer, D. C. (1965). Heat transfer and convection currents. Philosophical Transactions of the Royal Society A, 258, 252–271.

    Google Scholar 

  • Tozer, D. C. (1972). The present thermal state of the terrestrial planets. Physics of the Earth and Planetary Interiors, 6, 182–197.

    Article  Google Scholar 

  • Turcotte, D. L. (1997). Fractals and Chaos in Geology and Geophysics (p. 412). Cambridge University Press.

    Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamics: applications of continuum physics to geological problems (2nd Edn.). New York, NY: Wiley.

    Google Scholar 

  • Urey, H. C. (1952). The planets: their origin and development (p. 245). New Haven: Yale University Press.

    Google Scholar 

  • Urey, H. C. (1955). The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences of the United States of America, 41, 127–144.

    Article  Google Scholar 

  • Weller, M. B., & Lenardic, A. (2012). Hysteresis in mantle convection: plate tectonics systems. Geophysical Research Letters, 39(L10202), 1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Thermal Evolution Models. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_2

Download citation

Publish with us

Policies and ethics