Skip to main content

Brain Tumor Segmentation Using 3D Convolutional Neural Network

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Included in the following conference series:

Abstract

Brain tumors segmentation is one of the most crucial procedures in the diagnosis of brain tumors because it is of great significance for the analysis and visualization of brain structures that can guide the surgery. With the development of natural scene segmentation model FCN, the most representative model U-net has been developed. An increasing number of people are trying to improve the encoder-decoder architecture to achieve better performance currently. In this paper, we focus on the improvement of the encoder-decoder network and the analysis of 3D medical images. We propose an additional path to enhance the encoder part and two separate up-sampling paths for the decoder part of the model. The proposed approach was trained and evaluated on BraTS 2019 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  2. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  3. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017

    Google Scholar 

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge (2018)

    Google Scholar 

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection, July 2017

    Google Scholar 

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015

    Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR, vol. abs/1703.06870. http://arxiv.org/abs/1703.06870 (2017)

  8. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR, vol. abs/1606.00915. http://arxiv.org/abs/1606.00915 (2016)

  9. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR, vol. abs/1706.05587. http://arxiv.org/abs/1706.05587 (2017)

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR, vol. abs/1505.04597. http://arxiv.org/abs/1505.04597 (2015)

  11. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  12. Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_13

    Chapter  Google Scholar 

  13. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  14. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. CoRR, vol. abs/1606.06650. http://arxiv.org/abs/1606.06650 (2016)

  15. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. CoRR, vol. abs/1606.04797. http://arxiv.org/abs/1606.04797 (2016)

  16. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. CoRR, vol. abs/1810.11654. http://arxiv.org/abs/1810.11654 (2018)

  17. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. CoRR, vol. abs/1809.10483. http://arxiv.org/abs/1809.10483 (2018)

  18. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data. CoRR, vol. abs/1701.03056. http://arxiv.org/abs/1701.03056 (2017)

  19. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  20. Kamnitsas, K., et al.: Deepmedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

    Chapter  Google Scholar 

  21. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  22. Wu, Y., He, K.: Group normalization. CoRR, vol. abs/1803.08494. http://arxiv.org/abs/1803.08494 (2018)

Download references

Acknowledgement

We would like to acknowledge Huashan Hospital, through the discussion with doctors and medical students, we have a deeper understanding of brain tumor segmentation and Glioma.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaisheng Liang or Wenlian Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, K., Lu, W. (2020). Brain Tumor Segmentation Using 3D Convolutional Neural Network. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics