Skip to main content

Introduction

  • Chapter
  • First Online:
  • 669 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 160))

Abstract

In times of growing urban populations and increasing environmental awareness, the importance of public transport systems is increasing as well. Public transport provides an efficient way for commuting by bundling traffic flows with the same general direction, thus reducing the individual traffic and the resulting congestions in peak hours. In this chapter, we introduce the public transport problems considered in this book as well as the data sets used for the experimental evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Ahuja, T. Magnanti, J. Orlin, Network Flows (1988)

    Google Scholar 

  2. R. Borndörfer, O. Arslan, Z. Elijazyfer, H. Güler, M. Renken, G. Şahin, T. Schlechte, Line planning on path networks with application to the Istanbul metrobüs, in Operations Research Proceedings 2016, pp. 235–241 (Springer, 2018)

    Google Scholar 

  3. S. Burggraeve, S. Bull, P. Vansteenwegen, R. Lusby, Integrating robust timetabling in line plan optimization for railway systems. Transp. Res. C Emerg. Technol. 77, 134–160 (2017)

    Google Scholar 

  4. A. Bertossi, P. Carraresi, G. Gallo, On some matching problems arising in vehicle scheduling models. Networks 17(3), 271–281 (1987)

    MathSciNet  MATH  Google Scholar 

  5. R. Borndörfer, M. Grötschel, U. Jäger, Planning problems in public transit, in Production Factor Mathematics, pp. 95–121 (Springer, 2010)

    Google Scholar 

  6. R. Borndörfer, M. Grötschel, M. Pfetsch, A column-generation approach to line planning in public transport. Transp. Sci. 41(1), 123–132 (2007)

    Google Scholar 

  7. R. Borndörfer, H. Hoppmann, M. Karbstein, Separation of cycle inequalities for the periodic timetabling problem, in 24th Annual European Symposium on Algorithms (ESA 2016), vol. 57 of Leibniz International Proceedings in Informatics (LIPIcs), ed. by P. Sankowski, C. Zaroliagis, (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016), pp. 21:1–21:13

    Google Scholar 

  8. R. Borndörfer, H. Hoppmann, M. Karbstein, Passenger routing for periodic timetable optimization. Public Transp. 9(1-2), 115–135 (2017)

    Google Scholar 

  9. S. Bunte, N. Kliewer, An overview on vehicle scheduling models. Public Transp. 1(4), 299–317 (2009)

    Google Scholar 

  10. R. Borndörfer, M. Karbstein, C. Liebchen, N. Lindner, A simple way to compute the number of vehicles that are required to operate a periodic timetable, in 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), vol. 65 of OpenAccess Series in Informatics (OASIcs), ed. by R. Borndörfer, S. Storandt (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018), pp. 16:1–16:15

    Google Scholar 

  11. M. Bussieck, P. Kreuzer, U. Zimmermann, Optimal lines for railway systems. Eur. J. Oper. Res. 96(1), 54–63 (1997)

    MATH  Google Scholar 

  12. M. Bussieck, T. Lindner, M. Lübbecke, A fast algorithm for near cost optimal line plans. Math. Methods Oper. Res. 59(2), 205–220 (2004)

    MathSciNet  MATH  Google Scholar 

  13. M. Barratt, A. Oliveira, Exploring the experiences of collaborative planning initiatives. Int. J. Phys. Distrib. Logist. Manag. 31(4), 266–289 (2001)

    Google Scholar 

  14. S. Bull, N. Rezanova, R. Lusby, J. Larsen, An applied optimization based method for line planning to minimize travel time. Technical report, DTU Management Engineering, 2016

    Google Scholar 

  15. M. Bussieck, Optimal lines in public rail transport, PhD thesis, Technische Universität Braunschweig, 1998

    Google Scholar 

  16. M. Bussieck, T. Winter, U. Zimmermann, Discrete optimization in public rail transport. Math. Program. 79(1-3), 415–444 (1997)

    MathSciNet  MATH  Google Scholar 

  17. E. Carrizosa, J. Harbering, A. Schöbel, The stop location problem with realistic traveling time, in 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, vol. 33 of OpenAccess Series in Informatics (OASIcs), ed. by D. Frigioni, S. Stiller (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2013), pp. 80–93

    Google Scholar 

  18. L. Cadarso, Á. Marín, Integration of timetable planning and rolling stock in rapid transit networks. Ann. Oper. Res. 199(1), 113–135 (2012)

    MathSciNet  MATH  Google Scholar 

  19. M. Claessens, N. van Dijk, P. Zwaneveld, Cost optimal allocation of rail passenger lines. Eur. J. Oper. Res. 110(3), 474–489 (1998)

    MATH  Google Scholar 

  20. A. Ceder, N. Wilson, Bus network design. Transp. Res. B Methodol. 20(4), 331–344 (1986)

    Google Scholar 

  21. M. Darvish, L. Coelho, Sequential versus integrated optimization: Production, location, inventory control, and distribution. Eur. J. Oper. Res. 268(1), 203–214 (2018)

    MathSciNet  MATH  Google Scholar 

  22. G. Desaulniers, M. Hickman, Public transit. Handbooks Oper. Res. Manag. Sci. 14, 69–127 (2007)

    Google Scholar 

  23. J. Daduna, J. Paixão, Vehicle scheduling for public mass transit - an overview. Computer-Aided Transit Scheduling (Springer, 1995), pp. 76–90

    Google Scholar 

  24. S. Dutta, N. Rangaraj, M. Belur, S. Dangayach, K. Singh, Construction of periodic timetables on a suburban rail network-case study from Mumbai, in RailLille 2017-7th International Conference on Railway Operations Modelling and Analysis, 2017

    Google Scholar 

  25. M. Ehrgott, Multicriteria Optimization, vol. 491 (Springer Science & Business Media, 2005)

    Google Scholar 

  26. M. Friedrich, M. Hartl, A. Schiewe, A. Schöbel, Angebotsplanung im öffentlichen Verkehr - planerische und algorithmische Lösungen, in Heureka’17, 2017

    Google Scholar 

  27. M. Friedrich, M. Hartl, A. Schiewe, A. Schöbel, Integrating passengers’ assignment in cost-optimal line planning, in 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), vol. 59 of OpenAccess Series in Informatics (OASIcs), ed. by G. D’Angelo, T. Dollevoet (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017), pp. 5:1–5:16

    Google Scholar 

  28. L. Fan, C. Mumford, A metaheuristic approach to the urban transit routing problem. J. Heuristics 16(3), 353–372 (2010)

    MATH  Google Scholar 

  29. M. Friedrich, M. Müller-Hannemann, R. Rückert, A. Schiewe, A. Schöbel, Robustness tests for public transport planning, in 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), vol. 59 of OpenAccess Series in Informatics (OASIcs), ed. by G. D’Angelo, T. Dollevoet (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017), pp. 1–16

    Google Scholar 

  30. M. Friedrich, M. Müller-Hannemann, R. Rückert, A. Schiewe, A. Schöbel, Robustness as a third dimension for evaluating public transport plans, in 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), vol. 65 of OpenAccess Series in Informatics (OASIcs), ed. by R. Borndörfer, S. Storandt (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018), pp. 4:1–4:17

    Google Scholar 

  31. FOR 2083: Integrated Planning For Public Transportation, Collection of open source public transport networks by DFG research unit. https://github.com/FOR2083/PublicTransportNetworks, 2018

  32. J. Fonseca, E. van der Hurk, R. Roberti, A. Larsen, A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling. Transp. Res. B Methodol. 109, 128–149 (2018)

    Google Scholar 

  33. P. Gattermann, P. Großmann, K. Nachtigall, A. Schöbel, Integrating passengers’ routes in periodic timetabling: A SAT approach, in 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), vol. 54 of OpenAccess Series in Informatics (OASIcs), ed. by M. Goerigk, R. Werneck (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2016), pp. 1–15

    Google Scholar 

  34. V. Guihaire, J. Hao. Transit network design and scheduling: A global review. Transp. Res. A Policy Pract. 42(10), 1251–1273 (2008)

    Google Scholar 

  35. V. Guihaire, J.-K. Hao, Transit network timetabling and vehicle assignment for regulating authorities. Comput. Ind. Eng. 59(1), 16–23 (2010)

    Google Scholar 

  36. P. Großmann, S. Hölldobler, N. Manthey, K. Nachtigall, J. Opitz, P. Steinke, Solving periodic event scheduling problems with SAT. Advanced Research in Applied Artificial Intelligence (Springer, 2012), pp. 166–175

    Google Scholar 

  37. P. Gattermann, J. Harbering, A. Schöbel, Line pool generation. Public Transp. 9(1-2), 7–32 (2017)

    Google Scholar 

  38. M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, vol. 29 (WH Freeman and Company, San Francisco, 1979)

    MATH  Google Scholar 

  39. M. Goerigk, C. Liebchen, An improved algorithm for the periodic timetabling problem, in 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), vol. 59 of OpenAccess Series in Informatics (OASIcs), ed. by G. D’Angelo, T. Dollevoet (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017), pp. 12:1–12:14

    Google Scholar 

  40. M. Goerigk, Algorithms and concepts for robust optimization, PhD thesis, Niedersächsische Staats-und Universitätsbibliothek Göttingen, 2012

    Google Scholar 

  41. J.-W. Goossens, Models and algorithms for railway line planning problems, PhD thesis, Universiteit Maastricht, 2004

    Google Scholar 

  42. B. Gavish, E. Shlifer, An approach for solving a class of transportation scheduling problems. Eur. J. Oper. Res. 3(2), 122–134 (1979)

    MathSciNet  MATH  Google Scholar 

  43. M. Goerigk, A. Schöbel, Improving the modulo simplex algorithm for large-scale periodic timetabling. Comput. Oper. Res. 40(5), 1363–1370 (2013)

    MathSciNet  MATH  Google Scholar 

  44. M. Goerigk, M. Schmidt, Line planning with user-optimal route choice. Eur. J. Oper. Res. 259(2), 424–436 (2017)

    MathSciNet  MATH  Google Scholar 

  45. L. Galli, S. Stiller, Modern challenges in timetabling. Handbook of Optimization in the Railway Industry (Springer, 2018), pp. 117–140

    Google Scholar 

  46. I. Grossmann, S. Van Den Heever, I. Harjunkoski, Discrete optimization methods and their role in the integration of planning and scheduling, in AIChE Symposium Series (American Institute of Chemical Engineers, New York, 1998, 2002), pp. 150–168

    Google Scholar 

  47. J.-W. Goossens, S. van Hoesel, L. Kroon, A branch-and-cut approach for solving railway line-planning problems. Transp. Sci. 38(3), 379–393 (2004)

    Google Scholar 

  48. J.-W. Goossens, S. van Hoesel, L. Kroon, On solving multi-type railway line planning problems. Eur. J. Oper. Res. 168(2), 403–424 (2006)

    MathSciNet  MATH  Google Scholar 

  49. J. Harbering, Planning a public transportation system with a view towards passengers’ convenience, PhD thesis, Universität Göttingen, 2016

    Google Scholar 

  50. D. Huisman, L. Kroon, R. Lentink, M. Vromans, Operations research in passenger railway transportation. Statistica Neerlandica 59(4), 467–497 (2005)

    MathSciNet  MATH  Google Scholar 

  51. O. Ibarra-Rojas, Y. Rios-Solis, Integrating synchronization bus timetabling and single-depot single-type vehicle scheduling, in ORP3 Meeting, Cadiz, 2011

    Google Scholar 

  52. M. Kaspi, Service oriented train timetabling, Master’s thesis, Tel Aviv University, 2010

    Google Scholar 

  53. M. Kümmling, P. Großmann, K. Nachtigall, J. Opitz, R. Weiß, A state-of-the-art realization of cyclic railway timetable computation. Public Transp. 7(3), 281–293 (2015)

    Google Scholar 

  54. L. Kroon, D. Huisman, E. Abbink, P.-J. Fioole, M. Fischetti, G. Maróti, A. Schrijver, A. Steenbeek, R. Ybema, The new Dutch timetable: The OR revolution. Interfaces 39(1), 6–17 (2009)

    Google Scholar 

  55. M. Kinder, Models for periodic timetabling, Master’s thesis, Technische Universität Berlin, 2008

    Google Scholar 

  56. K. Kepaptsoglou, M. Karlaftis, Transit route network design problem. J. Transp. Eng. 135(8), 491–505 (2009)

    Google Scholar 

  57. L. Kroon, L. Peeters, A variable trip time model for cyclic railway timetabling. Transp. Sci. 37(2), 198–212 (2003)

    Google Scholar 

  58. M. Kaspi, T. Raviv, Service-oriented line planning and timetabling for passenger trains. Transp. Sci. 47(3), 295–311 (2013)

    Google Scholar 

  59. K. Li, H. Huang, P. Schonfeld, Metro timetabling for time-varying passenger demand and congestion at stations. J. Adv. Transp. 2018, 26p. (2018)

    Google Scholar 

  60. K. Lu, B. Han, X. Zhou, Smart urban transit systems: From integrated framework to interdisciplinary perspective. Urban Rail Transit, 1–19 (2018)

    Google Scholar 

  61. C. Liebchen, Finding short integral cycle bases for cyclic timetabling, in European Symposium on Algorithms (Springer, 2003), pp. 715–726

    Google Scholar 

  62. C. Liebchen, Periodic Timetable Optimization in Public Transport, dissertation.de (Verlag im Internet, Berlin, 2006)

    Google Scholar 

  63. C. Liebchen, The first optimized railway timetable in practice. Transp. Sci. 42(4), 420–435 (2008)

    Google Scholar 

  64. C. Liebchen, Linien-, Fahrplan-, Umlauf-und Dienstplanoptimierung: Wie weit können diese bereits integriert werden?, in Heureka’08, 2008

    Google Scholar 

  65. C. Liebchen, Nutzung graphentheoretischer Konzepte zur manuellen Erstellung effizienter Verkehrsangebote, in 26. Verkehrswissenschaftliche Tage Dresden, Germany: Technische Universität Dresden, pp. 309–332, 2018, ed. by J. Schänberger, S. Nerlich

    Google Scholar 

  66. T. Lindner, Train schedule optimization in public rail transport, PhD thesis, Technische Universität Braunschweig, 2000

    Google Scholar 

  67. A. Lenderink, H. Kals, The integration of process planning and machine loading in small batch part manufacturing. Robot. Comput. Integr. Manuf. 10(1-2), 89–98 (1993)

    Google Scholar 

  68. R. Lusby, J. Larsen, M. Ehrgott, D. Ryan, Railway track allocation: models and methods. OR Spectr. 33(4), 843–883 (2011)

    MathSciNet  MATH  Google Scholar 

  69. C. Liebchen, R. Möhring, The modeling power of the periodic event scheduling problem: railway timetables and beyond. Algorithmic Methods for Railway Optimization (Springer, 2007), pp. 3–40

    Google Scholar 

  70. C. Liebchen, L. Peeters, Integral cycle bases for cyclic timetabling. Discret. Optim. 6(1), 98–109 (2009)

    MathSciNet  MATH  Google Scholar 

  71. M. Lübbecke, C. Puchert, P. Schiewe, A. Schöbel, Integrating line planning, timetabling and vehicle scheduling - integer programming formulation and analysis, in Proceedings of CASPT 2018, 2018

    Google Scholar 

  72. H. Lee, V. Padmanabhan, S. Whang, Information distortion in a supply chain: The bullwhip effect. Manag. Sci. 43(4), 546–558 (1997)

    MATH  Google Scholar 

  73. C. Liebchen, R. Rizzi, A greedy approach to compute a minimum cycle basis of a directed graph. Inf. Process. Lett. 94(3), 107–112 (2005)

    MathSciNet  MATH  Google Scholar 

  74. W. Lampkin, P. Saalmans, The design of routes, service frequencies, and schedules for a municipal bus undertaking: A case study. J. Oper. Res. Soc. 18(4), 375–397 (1967)

    Google Scholar 

  75. C. Mandl, Evaluation and optimization of urban public transportation networks. Eur. J. Oper. Res. 5(6), 396–404 (1980)

    MathSciNet  MATH  Google Scholar 

  76. G. Maróti, Operations research models for railway rolling stock planning, PhD thesis, Eindhoven University of Technology, 2006

    Google Scholar 

  77. G. Matos, L. Albino, R. Saldanha, E. Morgado, Solving periodic timetabling problems with SAT and machine learning, in Proceedings of CASPT 2018, 2018

    Google Scholar 

  78. M. Mesquita, A. Paias, A. Respício, Branching approaches for integrated vehicle and crew scheduling. Public Transp. 1(1), 21–37 (2009)

    Google Scholar 

  79. M. Michaelis, A. Schöbel, Integrating line planning, timetabling, and vehicle scheduling: A customer-oriented approach. Public Transp. 1(3), 211–232 (2009)

    Google Scholar 

  80. K. Nachtigall, Periodic network optimization and fixed interval timetables, PhD thesis, University of Hildesheim, 1998

    Google Scholar 

  81. K. Nachtigall, K. Jerosch, Simultaneous network line planning and traffic assignment, in 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08), ed. by M. Fischetti, P. Widmayer. OpenAccess Series in Informatics (OASIcs) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2008)

    Google Scholar 

  82. K. Nachtigall, J. Opitz, Solving periodic timetable optimisation problems by modulo simplex calculations, in 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08), ed. by M. Fischetti, P. Widmayer. OpenAccess Series in Informatics (OASIcs) (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2008)

    Google Scholar 

  83. K. Nachtigall, S. Voget, A genetic algorithm approach to periodic railway synchronization. Comput. Oper. Res. 23(5), 453–463 (1996)

    MATH  Google Scholar 

  84. K. Nachtigall, S. Voget, Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks. Eur. J. Oper. Res. 103(3), 610–627 (1997)

    MATH  Google Scholar 

  85. G. Nemhauser, L. Wolsey, Integer and Combinatorial Optimization (Wiley, 1988)

    Google Scholar 

  86. M. Odijk, A constraint generation algorithm for the construction of periodic railway timetables. Transp. Res. B Methodol. 30(6), 455–464 (1996)

    Google Scholar 

  87. C. Orloff, Route constrained fleet scheduling. Transp. Sci. 10(2), 149–168 (1976)

    Google Scholar 

  88. J. Paixão, I. Branco, A quasi-assignment algorithm for bus scheduling. Networks 17(3), 249–269 (1987)

    MathSciNet  MATH  Google Scholar 

  89. M. Pfetsch, R. Borndörfer, Routing in line planning for public transport, in Operations Research Proceedings 2005 (Springer, 2006), pp. 405–410

    Google Scholar 

  90. L. Peeters, Cyclic railway timetable optimization, PhD thesis, Erasmus University Rotterdam, 2003

    Google Scholar 

  91. L. Peeters, L. Kroon, A cycle based optimization model for the cyclic railway timetabling problem. Computer-Aided Scheduling of Public Transport (Springer, 2001), pp. 275–296

    Google Scholar 

  92. H. Petersen, A. Larsen, O. Madsen, B. Petersen, S. Ropke, The simultaneous vehicle scheduling and passenger service problem. Transp. Sci. 47(4), 603–616 (2013)

    Google Scholar 

  93. J. Pätzold, A. Schöbel, A matching approach for periodic timetabling, in 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), vol. 54 of OpenAccess Series in Informatics (OASIcs), ed. by M. Goerigk, R. Werneck (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016), pp. 1:1–1:15

    Google Scholar 

  94. J. Pätzold, A. Schiewe, A. Schöbel, Cost-minimal public transport planning, in 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), vol. 65 of OpenAccess Series in Informatics (OASIcs), ed. by R. Borndörfer, S. Storandt (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018), pp. 8:1–8:22

    Google Scholar 

  95. J. Pätzold, A. Schiewe, P. Schiewe, A. Schöbel, Look-ahead approaches for integrated planning in public transportation, in 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), vol. 59 of OpenAccess Series in Informatics (OASIcs), ed. by G. D’Angelo, T. Dollevoet (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017), pp. 17:1–17:16

    Google Scholar 

  96. M. Rittner, K. Nachtigall, Simultane Liniennetz- und Fahrlagenoptimierung. Der Eisenbahningenieur, 2009

    Google Scholar 

  97. M. Reuther, T. Schlechte, Optimization of rolling stock rotations. Handbook of Optimization in the Railway Industry (Springer, 2018), pp. 213–241

    Google Scholar 

  98. T. Robenek, S. Sharif Azadeh, Y. Maknoon, M. Bierlaire, Hybrid cyclicity: Combining the benefits of cyclic and non-cyclic timetables. Transp. Res. C Emerg. Technol. 75, 228–253 (2017)

    Google Scholar 

  99. J. Saha, An algorithm for bus scheduling problems. J. Oper. Res. Soc. 21(4), 463–474 (1970)

    MathSciNet  MATH  Google Scholar 

  100. A. Schiewe, S. Albert, J. Pätzold, P. Schiewe, A. Schöbel, J. Schulz, LinTim: An integrated environment for mathematical public transport optimization. documentation. Technical Report 2018-08, Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-August-Universität Göttingen, 2018

    Google Scholar 

  101. A. Schiewe, S. Albert, J. Pätzold, P. Schiewe, and A. Schöbel. LinTim - integrated optimization in public transportation. homepage. https://www.lintim.net, 2020

  102. L. Silman, Z. Barzily, U. Passy, Planning the route system for urban buses. Comput. Oper. Res. 1(2), 201–211 (1974)

    Google Scholar 

  103. D. Schmidt, Linien- und Taktfahrplanung - Ein integrierter Optimierungsansatz, Master’s thesis, Technische Universität Berlin, 2005. in German

    Google Scholar 

  104. S. Scholl, Customer-oriented line planning, PhD thesis, Technische Universität Kaiserslautern, 2005

    Google Scholar 

  105. A. Schöbel, Line planning in public transportation: models and methods. OR Spectr. 34(3), 491–510 (2012)

    MathSciNet  MATH  Google Scholar 

  106. M. Schmidt, Integrating Routing Decisions in Public Transportation Problems, vol. 89 of Optimization and Its Applications (Springer, 2014)

    Google Scholar 

  107. A. Schöbel, An eigenmodel for iterative line planning, timetabling and vehicle scheduling in public transportation. Transp. Res. C Emerg. Technol. 74, 348–365 (2017)

    Google Scholar 

  108. V. Schmid, J. Ehmke, Integrated timetabling and vehicle scheduling with balanced departure times. OR Spectr. 37(4), 903–928 (2015)

    MathSciNet  MATH  Google Scholar 

  109. M. Siebert, M. Goerigk, An experimental comparison of periodic timetabling models. Comput. Oper. Res. 40(10), 2251–2259 (2013)

    MathSciNet  MATH  Google Scholar 

  110. M. Siebert, Integration of routing and timetabling in public transportation, Master’s thesis, Georg-August-Universität Göttingen, 2011

    Google Scholar 

  111. H. Sonntag, Ein heuristisches Verfahren zum Entwurf nachfrageorientierter Linienführung im öffentlichen Personennahverkehr. Zeitschrift für Oper. Res. 23(2), B15–B31 (1979)

    MATH  Google Scholar 

  112. A. Schöbel, S. Scholl, Line planning with minimal transfers, in 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, vol. 6901, 2006

    Google Scholar 

  113. M. Schmidt, A. Schöbel, The complexity of integrating passenger routing decisions in public transportation models. Networks 65(3), 228–243 (2015)

    MathSciNet  MATH  Google Scholar 

  114. M. Schmidt, A. Schöbel, Timetabling with passenger routing. OR Spectr. 37(1), 75–97 (2015)

    MathSciNet  MATH  Google Scholar 

  115. P. Schiewe, A. Schöbel, Timetabling with integrated routing: Toward applicable approaches. Transp. Sci. (2020). Accepted

    Google Scholar 

  116. A. Schiewe, P. Schiewe, M. Schmidt, The line planning routing game. Eur. J. Oper. Res. 274(2), 560–573 (2019)

    MathSciNet  MATH  Google Scholar 

  117. P. Serafini, W. Ukovich, A mathematical model for periodic scheduling problems. SIAM J. Discret. Math. 2(4), 550–581 (1989)

    MathSciNet  MATH  Google Scholar 

  118. W. Tan, B. Khoshnevis, Integration of process planning and scheduling - a review. J. Intell. Manuf. 11(1), 51–63 (2000)

    Google Scholar 

  119. A. van den Heuvel, J. van den Akker, M. van Kooten Niekerk, Integrating timetabling and vehicle scheduling in public bus transportation. Technical report, Utrecht University, 2008

    Google Scholar 

  120. C. Viggiano, Bus network sketch planning with origin-destination travel data, PhD thesis, Massachusetts Institute of Technology, 2017

    Google Scholar 

  121. Y. Yue, J. Han, S. Wang, X. Liu, Integrated train timetabling and rolling stock scheduling model based on time-dependent demand for urban rail transit. Comput. Aided Civ. Inf. Eng. 32(10), 856–873 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schiewe, P. (2020). Introduction. In: Integrated Optimization in Public Transport Planning. Springer Optimization and Its Applications, vol 160. Springer, Cham. https://doi.org/10.1007/978-3-030-46270-3_1

Download citation

Publish with us

Policies and ethics