Skip to main content

Environmental and Biotic Factors Impacting the Activities of Bdellovibrio bacteriovorus

  • Chapter
  • First Online:
The Ecology of Predation at the Microscale

Abstract

‘Everything is everywhere, but the environment selects’

– Lourens Baas Becking

This quote by Dutch botanist Lourens Baas Becking, when extended to microbiology, implies the activities of microorganisms are defined by the environment in which they find themselves, with biotic and abiotic factors alike impacting their activity, metabolism and viability. This is definitely true of Bdellovibrio bacteriovorus-and-like-organisms (BALOs), which are influenced directly by both their environment and the prey metabolic activities, stimuli that can have drastic impacts on the predatory activities of these strains. The goal of this chapter, therefore, is to delve deeper into, and gain a better understanding of, the correlation between predatory bacteria and their environment. Towards this end, we discuss here many of the factors and conditions (biotic and abiotic) that impact BALOs and their activities, including the osmolality, oxygen, serum albumin and indole. We hope through this discussion young scientists will gain a significant understanding of the current hurdles holding BALOs back from many real-world applications, such as in treatment of bacterial infections or within wastewater treatment systems, and encouragement to find solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amat AS, Torrella F. Isolation and characterization of marine and salt pond halophilic Bdellovibrios. Can J Microbiol. 1989;35:771–8.

    Google Scholar 

  • Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA. Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ Sci Pollut Res Int. 2018;25:5164–80.

    CAS  PubMed  Google Scholar 

  • Askeland RA, Morrison SM. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol. 1983;45:1802–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol. 2011;77:5794–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagwell CE, Abernathy A, Barnwell R, Milliken CE, Noble PA, Dale T, et al. Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory Bacteria. Front Microbiol. 2016;7:516.

    PubMed  PubMed Central  Google Scholar 

  • Baker M, Negus D, Raghunathan D, Radford P, Moore C, Clark G, et al. Measuring and modelling the response of Klebsiella pneumoniae KPC prey to Bdellovibrio bacteriovorus predation, in human serum and defined buffer. Sci Rep. 2017;7:8329.

    PubMed  PubMed Central  Google Scholar 

  • Barel G, Sirota A, Volpin H, Jurkevitch E. Fate of predator and prey proteins during growth of Bdellovibrio bacteriovorus on Escherichia coli and Pseudomonas syringae prey. J Bacteriol. 2005;187:329–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck S, Muller FD, Strauch E, Brecker L, Linscheid MW. Chemical structure of Bacteriovorax stolpii lipid A. Lipids. 2010;45:189–98.

    CAS  PubMed  Google Scholar 

  • Boileau MJ, Clinkenbeard KD, Iandolo JJ. Assessment of Bdellovibrio bacteriovorus 109J killing of Moraxella bovis in an in vitro model of infectious bovine keratoconjunctivitis. Can J Vet Res. 2011;75:285–91.

    PubMed  PubMed Central  Google Scholar 

  • Boileau MJ, Mani R, Breshears MA, Gilmour M, Taylor JD, Clinkenbeard KD. Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am J Vet Res. 2016;77:1017–28.

    CAS  PubMed  Google Scholar 

  • Burger A, Drews G, Ladwig R. Host range and infection cycle of a newly isolated strain of Bdellovibrio bacteriovorus. Arch Mikrobiol. 1968;61:261–79.

    CAS  PubMed  Google Scholar 

  • Cao H, He S, Lu L, Yang X, Chen B. Identification of a Proteus penneri isolate as the causal agent of red body disease of the cultured white shrimp Penaeus vannamei and its control with Bdellovibrio bacteriovorus. Antonie Van Leeuwenhoek. 2014;105:423–30.

    PubMed  Google Scholar 

  • Cao H, An J, Zheng W, He S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J Invertebr Pathol. 2015;130:13–20.

    PubMed  Google Scholar 

  • Cao HP, Yang YB, Lu LQ, Yang XL, Ai XH. Effect of copper sulfate on Bdellovibrio growth and bacteriolytic activity towards gibel carp-pathogenic Aeromonas hydrophila. Can J Microbiol. 2018;64:1054–8.

    CAS  PubMed  Google Scholar 

  • Chauhan A, Fortenberry GZ, Lewis DE, Williams HN. Increased diversity of predacious Bdellovibrio-Like Organisms (BLOs) as a function of eutrophication in Kumaon Lakes of India. Curr Microbiol. 2009;59:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Choi EY, Kim DJ, Kim JH, Kim TS, Oh SW. A rapid, simple measurement of human albumin in whole blood using a fluorescence immunoassay (I). Clin Chim Acta. 2004;339:147–56.

    CAS  PubMed  Google Scholar 

  • Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep. 2015a;5:15598.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Yoon KH, Lee JI, Mitchell RJ. Violacein: properties and production of a versatile bacterial pigment. Biomed Res Int. 2015b;2015:465056.

    PubMed  PubMed Central  Google Scholar 

  • Choi SY, Im H, Mitchell RJ. Violacein and bacterial predation: promising alternatives for priority multidrug resistant human pathogens. Future Microbiol. 2017;12:835–8.

    CAS  PubMed  Google Scholar 

  • Dashiff A, Kadouri DE. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol Oral Microbiol. 2011;26:19–34.

    CAS  PubMed  Google Scholar 

  • Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol. 2011a;110:431–44.

    CAS  PubMed  Google Scholar 

  • Dashiff A, Keeling TG, Kadouri DE. Inhibition of predation by Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus via host cell metabolic activity in the presence of carbohydrates. Appl Environ Microbiol. 2011b;77:2224–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidov Y, Friedjung A, Jurkevitch E. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol. 2006;8:1667–73.

    CAS  PubMed  Google Scholar 

  • de Chateau M, Holst E, Bjorck L. Protein PAB, an albumin-binding bacterial surface protein promoting growth and virulence. J Biol Chem. 1996;271:26609–15.

    PubMed  Google Scholar 

  • Duncan MC, Forbes JC, Nguyen Y, Shull LM, Gillette RK, Lazinski DW, et al. Vibrio cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun. 2018;9:4757.

    PubMed  PubMed Central  Google Scholar 

  • Dwidar M, Hong S, Cha M, Jang J, Mitchell RJ. Combined application of bacterial predation and carbon dioxide aerosols to effectively remove biofilms. Biofouling. 2012a;28:671–80.

    CAS  PubMed  Google Scholar 

  • Dwidar M, Monnappa AK, Mitchell RJ. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep. 2012b;45:71–8.

    CAS  PubMed  Google Scholar 

  • Dwidar M, Leung BM, Yaguchi T, Takayama S, Mitchell RJ. Patterning bacterial communities on epithelial cells. PLoS One. 2013;8:e67165.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dwidar M, Nam D, Mitchell RJ. Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ Microbiol. 2015;17:1009–22.

    CAS  PubMed  Google Scholar 

  • Dwidar M, Im H, Seo JK, Mitchell RJ. Attack-phase Bdellovibrio bacteriovorus responses to extracellular nutrients are analogous to those seen during late Intraperiplasmic growth. Microb Ecol. 2017;74:937–46.

    CAS  PubMed  Google Scholar 

  • Fratamico PM, Whiting RC. Ability of Bdellovibrio-Bacteriovorus 109j to lyse gram-negative food-borne pathogenic and spoilage bacteria. J Food Prot. 1995;58:160–4.

    PubMed  Google Scholar 

  • Freeman LR, Angelini P, Silverman GJ, Merritt C Jr. Production of hydrogen cyanide by Pseudomonas fluorescens. Appl Microbiol. 1975;29:560–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fry JC, Staples DG. Distribution of Bdellovibrio-Bacteriovorus in sewage works, river water, and sediments. Appl Environ Microbiol. 1976;31:469–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol. 2001;183:6207–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganuza E, Sellers CE, Bennett BW, Lyons EM, Carney LT. A novel treatment protects Chlorella at commercial scale from the predatory bacterium Vampirovibrio chlorellavorus. Front Microbiol. 2016;7:848.

    PubMed  PubMed Central  Google Scholar 

  • Garcia CJ, Pericleous A, Elsayed M, Tran M, Gupta S, Callaghan JD, et al. Serralysin family metalloproteases protects Serratia marcescens from predation by the predatory bacteria Micavibrio aeruginosavorus. Sci Rep. 2018;8:14025.

    PubMed  PubMed Central  Google Scholar 

  • Guo YB, Pan Q, Yan SQ, Chen YH, Li MJ, Chen D, et al. Bdellovibrio and like organisms promoted growth and survival of juvenile abalone Haliotis discus hannai Ino and modulated bacterial community structures in its gut. Aquacult Int. 2017;25:1625–43.

    Google Scholar 

  • Hall NH, Isaza R, Hall JS, Wiedner E, Conrad BL, Wamsley HL. Serum osmolality and effects of water deprivation in captive Asian elephants (Elephas maximus). J Vet Diagn Investig. 2012;24:688–95.

    Google Scholar 

  • Hoshino T, Kondo T, Uchiyama T, Ogasawara N. Studies on the biosynthesis of Violacein .1. Biosynthesis of Violacein – a novel rearrangement in tryptophan-metabolism with a 1,2-shift of the indole ring. Agric Biol Chem Tokyo. 1987;51:965–8.

    CAS  Google Scholar 

  • Huang JCC, Starr MP. Effects of calcium and magnesium ions and host viability on growth of Bdellovibrios. Antonie Van Leeuwenhoek. 1973;39:151–67.

    CAS  PubMed  Google Scholar 

  • Iebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L, Virga A, et al. Bdellovibrio bacteriovorus directly attacks pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Front Microbiol. 2014;5:280.

    PubMed  PubMed Central  Google Scholar 

  • Im H, Choi SY, Son S, Mitchell RJ. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci Rep. 2017a;7:14415.

    PubMed  PubMed Central  Google Scholar 

  • Im H, Son S, Mitchell RJ, Ghim CM. Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum. Sci Rep. 2017b;7

    Google Scholar 

  • Im H, Dwidar M, Mitchell RJ. Bdellovibrio bacteriovorus HD100, a predator of gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. 2018;12:2090–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner JL. Detection and identification of Bacteriovorax stolpii UKi2 Sphingophosphonolipid molecular species. J Am Soc Mass Spectrom. 2007;18:394–403.

    CAS  PubMed  Google Scholar 

  • Johansson MU, Frick IM, Nilsson H, Kraulis PJ, Hober S, Jonasson P, et al. Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J Biol Chem. 2002;277:8114–20.

    CAS  PubMed  Google Scholar 

  • Jurkevitch E, Minz D, Ramati B, Barel G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol. 2000;66:2365–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri DE, Tran A. Measurement of predation and biofilm formation under different ambient oxygen conditions using a simple gasbag-based system. Appl Environ Microbiol. 2013;79:5264–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadouri D, Venzon NC, O’Toole GA. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol. 2007;73:605–14.

    CAS  PubMed  Google Scholar 

  • Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol. 2014;89:149–61.

    CAS  PubMed  Google Scholar 

  • Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One. 2013;8:e61850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley JI, Turng BF, Williams HN, Baer ML. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl Environ Microbiol. 1997;63:84–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koval SF, Williams HN, Stine OC. Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol. 2015;65:593–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehl FA, Buhs RP, Putter I, Ormond R, Lyons JE, Chaiet L, et al. D-4-Amino-3-Isoxazolidone, a new antibiotic. J Am Chem Soc. 1955;77:2344–5.

    CAS  Google Scholar 

  • Lederberg J. Smaller fleas ... ad infinitum: therapeutic bacteriophage redux. Proc Natl Acad Sci USA. 1996;93:3167–8.

    CAS  PubMed  Google Scholar 

  • Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34:426–44.

    CAS  PubMed  Google Scholar 

  • Li H, Chen C, Sun Q, Liu R, Cai J. Bdellovibrio and like organisms enhanced growth and survival of Penaeus monodon and altered bacterial community structures in its rearing water. Appl Environ Microbiol. 2014;80:6346–54.

    PubMed  PubMed Central  Google Scholar 

  • Li N, Chen H, Williams HN. Genome-wide comparative analysis of ABC systems in the Bdellovibrio-and-like organisms. Gene. 2015;562:132–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marbach A, Shilo M. Dependence of marine Bdellovibrios on potassium, calcium, and magnesium-ions. Appl Environ Microbiol. 1978;36:169–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNeely D, Chanyi RM, Dooley JS, Moore JE, Koval SF. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus. Can J Microbiol. 2017;63:350–8.

    CAS  PubMed  Google Scholar 

  • Michaels R, Hankes LV, Corpe WA. Cyanide formation from glycine by nonproliferating cells of Chromobacterium violaceum. Arch Biochem Biophys. 1965;111:121–5.

    CAS  PubMed  Google Scholar 

  • Monnappa AK, Dwidar M, Seo JK, Hur JH, Mitchell RJ. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep. 2014;4:3811.

    PubMed  PubMed Central  Google Scholar 

  • Monnappa AK, Bari W, Choi SY, Mitchell RJ. Investigating the responses of human epithelial cells to predatory bacteria. Sci Rep. 2016;6:33485.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mun W, Kwon H, Im H, Choi SY, Monnappa AK, Mitchell RJ. Cyanide production by Chromobacterium piscinae shields it from Bdellovibrio bacteriovorus HD100 predation. MBio. 2017;8

    Google Scholar 

  • Paix B, Ezzedine JA, Jacquet S. Diversity, dynamics, and distribution of Bdellovibrio and like organisms in Perialpine Lakes. Appl Environ Microbiol. 2019;85

    Google Scholar 

  • Pineiro SA, Stine OC, Chauhan A, Steyert SR, Smith R, Williams HN. Global survey of diversity among environmental saltwater Bacteriovoracaceae. Environ Microbiol. 2007a;9:2441–50.

    CAS  PubMed  Google Scholar 

  • Pineiro SA, Stine OC, Chauhan A, Steyert SR, Smith R, Williams HN. Global survey of diversity among environmental saltwater Bacteriovoracaceae. Environ Microbiol. 2007b;9:2441–50.

    CAS  PubMed  Google Scholar 

  • Pineiro S, Chauhan A, Berhane TK, Athar R, Zheng G, Wang C, et al. Niche partition of Bacteriovorax operational taxonomic units along salinity and temporal gradients in the Chesapeake Bay reveals distinct estuarine strains. Microb Ecol. 2013;65:652–60.

    CAS  PubMed  Google Scholar 

  • Procopio RE, Silva IR, Martins MK, Azevedo JL, Araujo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis. 2012;16:466–71.

    PubMed  Google Scholar 

  • Sangwan N, Lambert C, Sharma A, Gupta V, Khurana P, Khurana JP, et al. Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator-prey genotypes. Environ Microbiol Rep. 2015;7:812–23.

    CAS  PubMed  Google Scholar 

  • Schoeffield AJ, Williams HN. Efficiencies of recovery of Bdellovibrios from brackish-water environments by using various bacterial species as prey. Appl Environ Microbiol. 1990;56:230–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoeffield AJ, Williams HN, Turng B, Fackler WA Jr. A comparison of the survival of Intraperiplasmic and attack phase Bdellovibrios with reduced oxygen. Microb Ecol. 1996;32:35–46.

    CAS  PubMed  Google Scholar 

  • Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol. 2001;24:385–94.

    CAS  PubMed  Google Scholar 

  • Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U, Moll H, et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid a containing alpha-D-mannoses that replace phosphate residues: similarities and differences between the lipid as and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem. 2003;278:27502–12.

    CAS  PubMed  Google Scholar 

  • Seidler FJ, Starr MP. Factors affecting intracellular parasitic growth of Bdellovibrio Bacteriovorus developing within Escherichia Coli. J Bacteriol. 1969;97:912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shatzkes K, Tang C, Singleton E, Shukla S, Zuena M, Gupta S, et al. Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep. 2017;7

    Google Scholar 

  • Snyder AR, Williams HN, Baer ML, Walker KE, Stine OC. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int J Syst Evol Microbiol. 2002;52:2089–94.

    CAS  PubMed  Google Scholar 

  • Starr MP, Seidler RJ. Bdellovibrios. Annu Rev Microbiol. 1971;25:649.

    CAS  PubMed  Google Scholar 

  • Stolp H, Starr MP. Bdellovibrio Bacteriovorus Gen. Et Sp. N., a predatory, Ectoparasitic, and Bacteriolytic microorganism. Antonie Van Leeuwenhoek. 1963;29:217–48.

    CAS  PubMed  Google Scholar 

  • Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis. 2017;70:485–9.

    CAS  PubMed  Google Scholar 

  • Thomashow MF, Rittenberg SC. Penicillin-induced formation of osmotically stable spheroplasts in nongrowing Bdellovibrio bacteriovorus. J Bacteriol. 1978;133:1484–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Essche M, Sliepen I, Loozen G, Van Eldere J, Quirynen M, Davidov Y, et al. Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ Microbiol Rep. 2009;1:228–33.

    PubMed  Google Scholar 

  • Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, Van Eldere J, et al. Killing of anaerobic pathogens by predatory bacteria. Mol Oral Microbiol. 2011;26:52–61.

    PubMed  Google Scholar 

  • Varon M, Shilo M. Interaction of Bdellovibrio Bacteriovorus and host bacteria .I. kinetic studies of attachment and invasion of Escherichia Coli B by Bdellovibrio Bacteriovorus. J Bacteriol. 1968;95:744.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willcox MD, Patrikakis M, Loo CY, Knox KW. Albumin-binding proteins on the surface of the Streptococcus milleri group and characterization of the albumin receptor of Streptococcus intermedius C5. J Gen Microbiol. 1993;139:2451–8.

    CAS  PubMed  Google Scholar 

  • Williams HN. A study of the occurrence and distribution of Bdellovibrios in estuarine sediment over an annual cycle. Microbial Ecol. 1988;15:9–20.

    CAS  Google Scholar 

  • Williams HN, Falkler WA Jr. Distribution of bdellovibrios in the water column of an estuary. Can J Microbiol. 1984;30:971–4.

    CAS  PubMed  Google Scholar 

  • Williams HN, Schoeffield AJ, Guether D, Kelley J, Shah D, Falkler WA. Recovery of Bdellovibrios from submerged surfaces and other aquatic habitats. Microbial Ecol. 1995;29:39–48.

    CAS  Google Scholar 

  • Williams HN, Turng BF, Kelley JI. Survival response of Bacteriovorax in surface biofilm versus suspension when stressed by extremes in environmental conditions. Microb Ecol. 2009;58:474–84.

    PubMed  Google Scholar 

  • Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C, Till R, et al. Injections of predatory Bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol. 2016;26:3343–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Wang C, Williams HN, Pineiro SA. Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater Bacteriovorax. Environ Microbiol. 2008;10:2515–26.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Im, H., Bäcker, L.E., Mitchell, R.J. (2020). Environmental and Biotic Factors Impacting the Activities of Bdellovibrio bacteriovorus. In: Jurkevitch, E., Mitchell, R. (eds) The Ecology of Predation at the Microscale. Springer, Cham. https://doi.org/10.1007/978-3-030-45599-6_6

Download citation

Publish with us

Policies and ethics