Skip to main content

Secondary Metabolism of Predatory Bacteria

  • Chapter
  • First Online:
Book cover The Ecology of Predation at the Microscale

Abstract

Chemical mediators form the basis of microbial communication and are further known to influence the composition of multispecies consortia. It is thus not farfetched to ascribe such molecules also an important role in predator-prey interactions at the microscale. Already in 1984 two researchers, Eugene Rosenberg and Mazal Varon, speculated about a possible correlation between antibiotic production in myxobacteria and the predation strategy of these soil bacteria. However, it took almost 30 years until first evidence for their hypothesis was presented. Mainly due to the rapidly emerging field of genomics, it has now become obvious that not only myxobacteria but also many other groups of predatory bacteria share the potential for the biosynthesis of bioactive secondary metabolites. Recent studies indicate that a number of small molecules produced by predatory bacteria have functions in the process of predation beyond mere antibiosis. This chapter will summarize recent key findings in the field and provide a comprehensive overview on the biosynthetic capabilities of two model predators, namely Bdellovibrio bacteriovorus and Myxococcus xanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An JU, Kim BJ, Hong SH, Oh DK. Characterization of an omega-6 linoleate lipoxygenase from Burkholderia thailandensis and its application in the production of 13-hydroxyoctadecadienoic acid. Appl Microbiol Biotechnol. 2015;99:5487–97.

    CAS  PubMed  Google Scholar 

  • An JU, Hong SH, Oh DK. Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:823–33.

    CAS  PubMed  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30:108–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balibar CJ, Vaillancourt FH, Walsh CT. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol. 2005;12:1189–200.

    CAS  PubMed  Google Scholar 

  • Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol. 2017;44:573–88.

    CAS  PubMed  Google Scholar 

  • Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev. 2009;33:942–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat S, Ahrendt T, Dauth C, Bode HB, Shimkets LJ. Two lipid signals guide fruiting body development of Myxococcus xanthus. MBio. 2014;5:e00939–13.

    PubMed  PubMed Central  Google Scholar 

  • Bode HB, Meiser P, Klefisch T, Cortina NS, Krug D, Gohring A, et al. Mutasynthesis-derived myxalamids and origin of the isobutyryl-CoA starter unit of myxalamid B. ChemBioChem. 2007;8:2139–44.

    Google Scholar 

  • Bonner DP, O’Sullivan J, Tanaka SK, Clark JM, Whitney RR. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. II. Biological properties. J Antibiot (Tokyo). 1988;41:1745–51.

    CAS  Google Scholar 

  • Braga D, Hoffmeister D, Nett M. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis. Beilstein J Org Chem. 2016;12:2766–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burchard RP, Dworkin M. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J Bacteriol. 1966;91:535–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgard C, Zaburannyi N, Nadmid S, Maier J, Jenke-Kodama H, Luxenburger E, Bernauer HS, Wenzel SC. Genomics-guided exploitation of lipopeptide diversity in myxobacteria. ACS Chem Biol. 2017;12:779–86.

    Google Scholar 

  • Bycroft BW, Payne DJ. Dictionary of antibiotics and related substances. 2nd ed. Boca Raton: CRC Press; 2013.

    Google Scholar 

  • Cain CC, Lee D, Waldo RH 3rd, Henry AT, Casida EJ Jr, Wani MC, et al. Synergistic antimicrobial activity of metabolites produced by a nonobligate bacterial predator. Antimicrob Agents Chemother. 2003;47:2113–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calderone CT, Iwig DF, Dorrestein PC, Kelleher NL, Walsh CT. Incorporation of nonmethyl branches by isoprenoid-like logic: multiple beta-alkylation events in the biosynthesis of myxovirescin A1. Chem Biol. 2007;14:835–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casida LE Jr. Minireview: nonobligate bacterial predation of bacteria in soil. Microb Ecol. 1988;15:1–8.

    PubMed  Google Scholar 

  • Corbin JL, Bulen WA. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-di-(2,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 1969;8:757–62.

    Google Scholar 

  • Cortina NS, Krug D, Plaza A, Revermann O, Muller R. Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed. 2012;51:811–6.

    Google Scholar 

  • Davies J. Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol. 2006;33:496–9.

    CAS  PubMed  Google Scholar 

  • Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24:403–27.

    CAS  PubMed  Google Scholar 

  • Dewick PM. Medicinal natural products: a biosynthetic approach. 2nd ed. Chichester: Wiley; 2002.

    Google Scholar 

  • Dickschat JS, Wenzel SC, Bode HB, Muller R, Schulz S. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. ChemBioChem. 2004;5:778–87.

    Google Scholar 

  • Dickschat JS, Bode HB, Mahmud T, Muller R, Schulz S. A novel type of geosmin biosynthesis in myxobacteria. J Org Chem. 2005a;70:5174–82.

    Google Scholar 

  • Dickschat JS, Bode HB, Wenzel SC, Muller R, Schulz S. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. ChemBioChem. 2005b;6:2023–33.

    Google Scholar 

  • Donadio S, Monciardini P, Sosio M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep. 2007;24:1073–109.

    CAS  PubMed  Google Scholar 

  • Dworkin M. Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev. 1996;60:70–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay BL. The chemical ecology of predatory soil bacteria. ACS Chem Biol. 2016;11:1502–10.

    CAS  PubMed  Google Scholar 

  • Friedberg D. Effect of light on Bdellovibrio bacteriovorus. J Bacteriol. 1977;131:399–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funa N, Ozawa H, Hirata A, Horinouchi S. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci USA. 2006;103:6356–61.

    CAS  PubMed  Google Scholar 

  • Gaitatzis N, Kunze B, Muller R. In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases. Proc Natl Acad Sci USA. 2001;98:11136–41.

    CAS  PubMed  Google Scholar 

  • Gaitatzis N, Kunze B, Muller R. Novel insights into siderophore formation in myxobacteria. ChemBioChem. 2005;6:365–74.

    Google Scholar 

  • Garcia R, Gerth K, Stadler M, Dogma IJ, Muller R. Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol. 2010;57:878–87.

    Google Scholar 

  • Gerth K, Irschik H, Reichenbach H, Trowitzsch W. Antibiotics from gliding Bacteria .8. The Myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales). J Antibiot. 1982;35:1454–9.

    Google Scholar 

  • Gerth K, Jansen R, Reifenstahl G, Hofle G, Irschik H, Kunze B, et al. Antibiotics from gliding Bacteria .14. The Myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales) .1. Production, physicochemical and biological properties, and mechanism of action. J Antibiot. 1983;36:1150–6.

    Google Scholar 

  • Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen J, et al. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA. 2006;103:15200–5.

    CAS  PubMed  Google Scholar 

  • Hansen J, Garreta A, Benincasa M, Fuste MC, Busquets M, Manresa A. Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol. 2013;97:4737–47.

    CAS  PubMed  Google Scholar 

  • Hayashi T, Kitamura Y, Funa N, Ohnishi Y, Horinouchi S. Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase. ChemBioChem. 2011;12:2166–76.

    Google Scholar 

  • Herrmann J, Fayad AA, Muller R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep. 2017;34:135–60.

    CAS  PubMed  Google Scholar 

  • Hertweck C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed. 2009;48:4688–716.

    Google Scholar 

  • Hobley L, Lerner TR, Williams LE, Lambert C, Till R, Milner DS, et al. Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the river Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics. 2012;13:670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Robbel L, Marahiell MA. Identification and characterization of the lysobactin biosynthetic gene cluster reveals mechanistic insights into an unusual termination module architecture. Chem Biol. 2011;18:655–64.

    Google Scholar 

  • Hug JJ, Panter F, Krug D, Muller R. Genome mining reveals uncommon alkylpyrones as type III PKS products from myxobacteria. J Ind Microbiol Biotechnol. 2019;46:319–34.

    CAS  PubMed  Google Scholar 

  • Hyun H, Lee S, Lee JS, Cho K. Genetic and functional analyses of the DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675. J Microbiol Biotechnol. 2018;28:1068–77.

    CAS  PubMed  Google Scholar 

  • Jansen R, Reifenstahl G, Gerth K, Reichenbach H, Höfle G. Antibiotika aus Gleitenden Bakterien, XV. Myaxalamide A, B, C und D eine Gruppe homologer Antibiotika aus Myxococcus xanthus Mx x12 (Myxobacterales). Liebigs Ann Chem. 1983;1983:1081–95.

    Google Scholar 

  • Jurkevitch E. Predatory behaviors in bacteria – diversity and transitions. Microbe. 2007;2:67–73.

    Google Scholar 

  • Kaiser D. Signaling in myxobacteria. Annu Rev Microbiol. 2004;58:75–98.

    CAS  PubMed  Google Scholar 

  • Kaiser D. Are Myxobacteria intelligent? Front Microbiol. 2013;4:335.

    PubMed  PubMed Central  Google Scholar 

  • Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One. 2013;8:e61850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns DB, Venot A, Bonner PJ, Stevens B, Boons GJ, Shimkets LJ. Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering. Proc Natl Acad Sci USA. 2001;98:13990–4.

    CAS  PubMed  Google Scholar 

  • Kiss H, Nett M, Domin N, Martin K, Maresca JA, Copeland A, et al. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95(T)). Stand Genomic Sci. 2011;5:356–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koeduka T, Kajiwara T, Matsui K. Cloning of lipoxygenase genes from a cyanobacterium, Nostoc punctiforme, and its expression in Escherichia coli. Curr Microbiol. 2007;54:315–9.

    Google Scholar 

  • Korp J, Konig S, Schieferdecker S, Dahse HM, Konig GM, Werz O, Nett M. Harnessing enzymatic promiscuity in myxochelin biosynthesis for the production of 5-lipoxygenase inhibitors. ChemBioChem. 2015;16:2445–50.

    Google Scholar 

  • Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem. 2016;12:594–607.

    Google Scholar 

  • Korp J, Winand L, Sester A, Nett M. Engineering Pseudochelin production in Myxococcus xanthus. Appl Environ Microbiol. 2018;84:e01789-18.

    Google Scholar 

  • Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Muller R. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol. 2008;74:3058–68.

    Google Scholar 

  • Kuhn H, Thiele BJ. The diversity of the lipoxygenase family – many sequence data but little information on biological significance. FEBS Lett. 1999;449:7–11.

    Google Scholar 

  • Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta. 2015;1851:308–30.

    Google Scholar 

  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Google Scholar 

  • Kunze B, Bedorf N, Kohl W, Hofle G, Reichenbach H. Myxochelin A, a new Iron-chelating compound from Angiococcus disciformis (Myxobacterales) – production, isolation, physicochemical and biological properties. J Antibiot. 1989;42:14–7.

    Google Scholar 

  • Kuzuyama T. Biosynthetic studies on terpenoids produced by Streptomyces. J Antibiot. 2017;70:811–8.

    Google Scholar 

  • Lambert C, Chang CY, Capeness MJ, Sockett RE. The first bite - profiling the predatosome in the bacterial pathogen Bdellovibrio. PLoS One. 2010;5:e8599.

    Google Scholar 

  • Li YY, Weissman KJ, Muller R. Myxochelin biosynthesis: direct evidence for two- and four-electron reduction of a carrier protein-bound thioester. J Am Chem Soc. 2008;130:7554.

    Google Scholar 

  • Livingstone PG, Millard AD, Swain MT, Whitworth DE. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding. Microb Genomics. 2018a;4

    Google Scholar 

  • Livingstone PG, Morphew RM, Cookson AR, Whitworth DE. Genome analysis, metabolic potential, and predatory capabilities of Herpetosiphon llansteffanense sp. nov. Appl Environ Microbiol. 2018b;84:e01040-18.

    Google Scholar 

  • Lorenzen W, Ring MW, Schwar G, Bode HB. Isoprenoids are essential for fruiting body formation in Myxococcus xanthus. J Bacteriol. 2009;191:5849–53.

    Google Scholar 

  • Lorenzen W, Ahrendt T, Bozhuyuk KAJ, Bode HB. A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat Chem Biol. 2014;10:425–7.

    Google Scholar 

  • Martin MO. Predatory prokaryotes: An emerging research opportunity. J Mol Microb Biotechnol. 2002;4:467–77.

    Google Scholar 

  • Meers PR, Liu C, Chen R, Bartos W, Davis J, Dziedzic N, et al. Vesicular delivery of the antifungal antibiotics of Lysobacter enzymogenes C3. Appl Environ Microbiol. 2018;84:e01353-18.

    Google Scholar 

  • Meiser P, Bode HB, Muller R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci USA. 2006;103:19128–33.

    Google Scholar 

  • Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS, Sandmann A, Muller R. DKxanthene biosynthesis--understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem Biol. 2008;15:771–81.

    Google Scholar 

  • Miyanaga S, Obata T, Onaka H, Fujita T, Saito N, Sakurai H, et al. Absolute configuration and antitumor activity of myxochelin A produced by Nonomuraea pusilla TP-A0861. J Antibiot. 2006;59:698–703.

    Google Scholar 

  • Mohseni MM, Hover T, Barra L, Kaiser M, Dorrestein PC, Dickschat JS, Schaberle TF. Discovery of a mosaic-like biosynthetic assembly line with a decarboxylative off-loading mechanism through a combination of genome mining and imaging. Angew Chem Int Ed. 2016;55:13611–4.

    Google Scholar 

  • Moore BS, Hertweck C, Hopke JN, Izumikawa M, Kalaitzis JA, Nilsen G, O’Hare T, Piel J, Shipley PR, Xiang L, Austin MB, Noel JP. Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J Nat Prod. 2002;65:1956–62.

    Google Scholar 

  • Moreno AJ, Fontes M, Murillo FJ. ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. J Bacteriol. 2001;183:557–69.

    Google Scholar 

  • Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol. 2014;80:5603–10.

    Google Scholar 

  • Muller S, Strack SN, Ryan SE, Kearns DB, Kirby JR. Predation by Myxococcus xanthus induces Bacillus subtilis to form spore-filled megastructures. Appl Environ Microbiol. 2015;81:203–10.

    Google Scholar 

  • Muller S, Strack SN, Ryan SE, Shawgo M, Walling A, Harris S, Chambers C, Boddicker J, Kirby JR. Identification of functions affecting predator-prey interactions between Myxococcus xanthus and Bacillus subtilis. J Bacteriol. 2016;198:3335–44.

    Google Scholar 

  • Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J. Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:781.

    Google Scholar 

  • Nan B, Zusman DR. Uncovering the mystery of gliding motility in the Myxobacteria. Annu Rev Genet. 2011;45:21–39.

    Google Scholar 

  • Nett M. Genome mining: concept and strategies for natural product discovery. Prog Chem Org Nat Prod. 2014;99:199–245.

    Google Scholar 

  • Nett M, Konig GM. The chemistry of gliding bacteria. Nat Prod Rep. 2007;24:1245–61.

    Google Scholar 

  • Nett M, Erol O, Kehraus S, Kock M, Krick A, Eguereva E, Neu E, Konig GM. Siphonazole, an unusual metabolite from Herpetosiphon sp. Angew Chem Int Ed. 2006;45:3863–7.

    Google Scholar 

  • O’Sullivan J, McCullough JE, Tymiak AA, Kirsch DR, Trejo WH, Principe PA. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J Antibiot (Tokyo). 1988;41:1740–4.

    Google Scholar 

  • Oliw EH. Plant and fungal lipoxygenases. Prostaglandins Other Lipid Mediat. 2002;68-69:313–23.

    Google Scholar 

  • Oyedara OO, Segura-Cabrera A, Guo XW, Elufisan TO, Gonzalez RA, Perez MAR. Whole-genome sequencing and comparative genome analysis provided insight into the predatory features and genetic diversity of two Bdellovibrio species isolated from soil. Int J Genomics. 2018;2018:9402073.

    Google Scholar 

  • Paitan Y, Alon G, Orr E, Ron EZ, Rosenberg E. The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J Mol Biol. 1999a;286:465–74.

    Google Scholar 

  • Paitan Y, Orr E, Ron EZ, Rosenberg E. A NusG-like transcription anti-terminator is involved in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus. FEMS Microbiol Lett. 1999b;170:221–7.

    Google Scholar 

  • Paitan Y, Orr E, Ron EZ, Rosenberg E. Cloning and characterization of a Myxococcus xanthus cytochrome P-450 hydroxylase required for biosynthesis of the polyketide antibiotic TA. Gene. 1999c;228:147–53.

    Google Scholar 

  • Paitan Y, Orr E, Ron EZ, Rosenberg E. A nonessential signal peptidase II (Lsp) of Myxococcus xanthus might be involved in biosynthesis of the polyketide antibiotic TA. J Bacteriol. 1999d;181:5644–51.

    Google Scholar 

  • Paitan Y, Orr E, Ron EZ, Rosenberg E. Genetic and functional analysis of genes required for the post-modification of the polyketide antibiotic TA of Myxococcus xanthus. Microbiology. 1999e;145:3059–67.

    Google Scholar 

  • Paitan Y, Orr E, Ron EZ, Rosenberg E. An unusual beta-ketoacyl: acyl carrier protein synthase and acyltransferase motifs in TaK, a putative protein required for biosynthesis of the antibiotic TA in Myxococcus xanthus. FEMS Microbiol Lett. 2001;203:191–7.

    Google Scholar 

  • Pan HW, He XS, Lux R, Luan J, Shi WY. Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact. Microb Ecol. 2013;66:630–8.

    Google Scholar 

  • Pan X, Domin N, Schieferdecker S, Kage H, Roth M, Nett M. Herpetopanone, a diterpene from Herpetosiphon aurantiacus discovered by isotope labeling. Beilstein J Org Chem. 2017;13:2458–65.

    Google Scholar 

  • Panthee S, Hamamoto H, Paudel A, Sekimizu K. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol. 2016;198:839–45.

    CAS  PubMed  Google Scholar 

  • Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J. 2013;7:756–69.

    CAS  PubMed  Google Scholar 

  • Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger MN, Koval S, Pietrokovski S, Gophna U, Jurkevitch E. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 2014;8:625–35.

    Google Scholar 

  • Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep. 2010;27:996–1047.

    CAS  PubMed  Google Scholar 

  • Plaga W, Stamm I, Schairer HU. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc Natl Acad Sci USA. 1998;95:11263–7.

    CAS  PubMed  Google Scholar 

  • Porta H, Rocha-Sosa M. Lipoxygenase in bacteria: a horizontal transfer event? Microbiology. 2001;147:3199–200.

    CAS  PubMed  Google Scholar 

  • Porta H, Rocha-Sosa M. Plant lipoxygenases. Physiological and molecular features. Plant Physiol. 2002;130:15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian H, Xia B, He Y, Lu Z, Bie X, Zhao H, Zhang C, Lu F. Expression, purification, and characterization of a novel acidic lipoxygenase from Myxococcus xanthus. Protein Expr Purif. 2017;138:13–7.

    Google Scholar 

  • Raju R, Mohr KI, Bernecker S, Herrmann J, Muller R. Cystodienoic acid: a new diterpene isolated from the myxobacterium Cystobacter sp. J Antibiot (Tokyo). 2015;68:473–5.

    CAS  Google Scholar 

  • Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyer F, Sockett RE, Schuster SC. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004;303:689–92.

    Google Scholar 

  • Reusch RN, Sadoff HL. Novel lipid components of the Azotobacter vinelandii cyst membrane. Nature. 1983;302:268–70.

    CAS  PubMed  Google Scholar 

  • Revermann O. Novel secondary metabolites from myxobacteria and their biosynthetic machinery. PhD thesis, Universität des Saarlandes. 2012.

    Google Scholar 

  • Rosenberg E, Dworkin M. Autocides and a paracide, antibiotic TA, produced by Myxococcus xanthus. J Ind Microbiol Biotechnol. 1996;17:424–31.

    CAS  Google Scholar 

  • Rosenberg E, Varon M. Antibiotics and lytic enzymes. In: Rosenberg E, editor. Myxobacteria. Development and cell interactions. New York: Springer; 1984. p. 109–25.

    Google Scholar 

  • Rosenberg E, Vaks B, Zuckerberg A. Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob Agents Chemother. 1973;4:507–13.

    Google Scholar 

  • Rosenberg E, Fytlovitch S, Carmeli S, Kashman Y. Chemical properties of Myxococcus xanthus antibiotic TA. J Antibiot. 1982;35:788–93.

    Google Scholar 

  • Schieferdecker S, Konig S, Weigel C, Dahse HM, Werz O, Nett M. Structure and biosynthetic assembly of gulmirecins, macrolide antibiotics from the predatory bacterium Pyxidicoccus fallax. Chem Eur J. 2014;20:15933–40.

    Google Scholar 

  • Schieferdecker S, Domin N, Hoffmeier C, Bryant DA, Roth M, Nett M. Structure and absolute configuration of auriculamide, a natural product from the predatory bacterium Herpetosiphon aurantiacus. Eur J Org Chem. 2015a:3057–62.

    Google Scholar 

  • Schieferdecker S, Konig S, Koeberle A, Dahse HM, Werz O, Nett M. Myxochelins target human 5-lipoxygenase. J Nat Prod. 2015b;78:335–8.

    Google Scholar 

  • Seccareccia I, Kost C, Nett M. Quantitative analysis of Lysobacter predation. Appl Environ Microbiol. 2015;81:7098–105.

    Google Scholar 

  • Sester A, Winand L, Pace S, Hiller W, Werz O, Nett M. Myxochelin- and pseudochelin-derived lipoxygenase inhibitors from a genetically engineered Myxococcus xanthus strain. J Nat Prod. 2019;82:2544–9.

    Google Scholar 

  • Shimizu Y, Ogata H, Goto S. Type III polyketide synthases: functional classification and phylogenomics. ChemBioChem. 2017;18:50–65.

    Google Scholar 

  • Shimkets LJ. Social and developmental biology of the myxobacteria. Microbiol Rev. 1990;54:473–501.

    Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7:539.

    Google Scholar 

  • Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, Muller R. The myxochelin iron transport regulon of the myxobacterium Stigmatella aurantiaca Sg a15. Eur J Biochem. 2000;267:6476–85.

    Google Scholar 

  • Simunovic V, Muller R. 3-hydroxy-3-methylglutaryl-CoA-like synthases direct the formation of methyl and ethyl side groups in the biosynthesis of the antibiotic myxovirescin A. ChemBioChem. 2007a;8:497–500.

    Google Scholar 

  • Simunovic V, Muller R. Mutational analysis of the myxovirescin biosynthetic gene cluster reveals novel insights into the functional elaboration of polyketide backbones. ChemBioChem. 2007b;8:1273–80.

    Google Scholar 

  • Simunovic V, Zapp J, Rachid S, Krug D, Meiser P, Muller R. Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases. ChemBioChem. 2006;7:1206–20.

    Google Scholar 

  • Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol. 2009;63:523–39.

    CAS  PubMed  Google Scholar 

  • Sonnenschein EC, Stierhof M, Goralczyk S, Vabre FM, Pellissier L, Hanssen KO, et al. Pseudochelin A, a siderophore of Pseudoalteromonas piscicida S2040. Tetrahedron. 2017;73:2633–7.

    Google Scholar 

  • Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Muller R. Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant staphylococci. Angew Chem Int Ed. 2014;53:13588–91.

    Google Scholar 

  • Sussmuth RD, Mainz A. Nonribosomal peptide synthesis - principles and prospects. Angew Chem Int Ed. 2017;56:3770–821.

    Google Scholar 

  • Sutcliffe IC, Harrington DJ, Hutchings MI. A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell. 2012;3:163–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trowitzsch W, Wray V, Gerth K, Hofle G. Structure of myxovirescin A, a new macrocyclic antibiotic from gliding bacteria. J Chem Soc Chem Comm. 1982:1340–2.

    Google Scholar 

  • Trowitzsch-Kienast K, Gerth K, Wray V, Reichenbach H, Höfle G. Myxochromid A: Ein hochungesättigtes Lipopeptidlacton aus Myxococcus virescens. Liebigs Ann Chem. 1993;1993:1233–7.

    Google Scholar 

  • Vaks B, Zuckerberg A, Rosenberg E. Purification and partial characterization of an antibiotic produced by Myxococcus xanthus. Can J Microbiol. 1974;20:155–61.

    CAS  PubMed  Google Scholar 

  • Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ. The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci USA. 2004;101:2135–9.

    CAS  PubMed  Google Scholar 

  • Varon M, Fuchs N, Monosov M, Tolchinsky S, Rosenberg E. Mutation and mapping of genes involved in production of the antibiotic TA in Myxococcus xanthus. Antimicrob Agents Chemother. 1992;36:2316–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velicer GJ, Vos M. Sociobiology of the myxobacteria. Annu Rev Microbiol. 2009;63:599–623.

    CAS  PubMed  Google Scholar 

  • Weissman KJ. The structural biology of biosynthetic megaenzymes. Nat Chem Biol. 2015;11:660–70.

    CAS  PubMed  Google Scholar 

  • Wenzel SC, Meiser P, Binz TM, Mahmud T, Muller R. Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. Angew Chem Int Ed. 2006;45:2296–301.

    Google Scholar 

  • Wurtzel O, Dori-Bachash M, Pietrokovski S, Jurkevitch E, Sorek R. Mutation detection with next-generation resequencing through a mediator genome. PLoS One. 2010;5:e15628.

    Google Scholar 

  • Xiao Y, Wall D. Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain. J Bacteriol. 2014;196:1174–83.

    PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Wei XM, Ebright R, Wall D. Antibiotic production by Myxobacteria plays a role in predation. J Bacteriol. 2011;193:4626–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Gerth K, Muller R, Wall D. Myxobacterium-produced antibiotic TA (Myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother. 2012;56:2014–21.

    Google Scholar 

  • Zafriri D, Rosenberg E, Mirelman D. Mode of action of Myxococcus xanthus antibiotic TA. Antimicrob Agents Chemother. 1981;19:349–51.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Bundesministerium für Bildung und Forschung (BMBF) for funding our research on predatory bacteria. Furthermore, we would like to thank our colleagues and coworkers at TU Dortmund University and at the Leibniz Institute for Natural Product Research and Infection Biology for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Nett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sester, A., Korp, J., Nett, M. (2020). Secondary Metabolism of Predatory Bacteria. In: Jurkevitch, E., Mitchell, R. (eds) The Ecology of Predation at the Microscale. Springer, Cham. https://doi.org/10.1007/978-3-030-45599-6_5

Download citation

Publish with us

Policies and ethics