Skip to main content

Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders

  • Chapter
  • First Online:
Neurodevelopmental Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 25))

Abstract

Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or “matured” neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8–24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2000). Principles of neural science. New York: McGraw-Hill.

    Google Scholar 

  2. DiCicco-Bloom, E., & Obiorah, M. (2017). Neural development and neurogenesis. In B. J. Saddock, V. Saddock, & P. Ruiz (Eds.), Kaplan & Sadock’s comprehensive textbook of psychiatry. 1 (10th ed., pp. 39–60). Philadelphia: Wolters Kluwer.

    Google Scholar 

  3. Clancy, B., Finlay, B. L., Darlington, R. B., & Anand, K. J. (2007). Extrapolating brain development from experimental species to humans. Neurotoxicology, 28(5), 931–937.

    Article  PubMed  Google Scholar 

  4. Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 7–17.

    Article  CAS  PubMed  Google Scholar 

  5. Molnar, Z., Metin, C., Stoykova, A., Tarabykin, V., Price, D. J., Francis, F., et al. (2006). Comparative aspects of cerebral cortical development. The European Journal of Neuroscience, 23(4), 921–934.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shipp, S. (2007). Structure and function of the cerebral cortex. Current Biology, 17(12), R443–R4R9.

    Article  CAS  PubMed  Google Scholar 

  7. Martynoga, B., Drechsel, D., & Guillemot, F. (2012). Molecular control of neurogenesis: A view from the mammalian cerebral cortex. Cold Spring Harbor Perspectives in Biology, 4(10), a008359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Urban, N., & Guillemot, F. (2014). Neurogenesis in the embryonic and adult brain: Same regulators, different roles. Frontiers in Cellular Neuroscience, 8, 396.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sansom, S. N., Griffiths, D. S., Faedo, A., Kleinjan, D. J., Ruan, Y., Smith, J., et al. (2009). The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genetics, 5(6), e1000511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McConnell, S. K. (1995). Constructing the cerebral cortex: Neurogenesis and fate determination. Neuron, 15(4), 761–768.

    Article  CAS  PubMed  Google Scholar 

  11. Hansen, A. H., Duellberg, C., Mieck, C., Loose, M., & Hippenmeyer, S. (2017). Cell polarity in cerebral cortex development-cellular architecture shaped by biochemical networks. Frontiers in Cellular Neuroscience, 11, 176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pressler, R., & Auvin, S. (2013). Comparison of brain maturation among species: An example in translational research suggesting the possible use of bumetanide in newborn. Frontiers in Neurology, 4, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubenstein, J. L. R. (2011). Development of the cerebral cortex: Implications for neurodevelopmental disorders. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 52(4), 339–355.

    Article  Google Scholar 

  15. Nicholas, C. R., Chen, J., Tang, Y., Southwell, D. G., Chalmers, N., Vogt, D., et al. (2013). Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell, 12(5), 573–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansen, D. V., Lui, J. H., Parker, P. R., & Kriegstein, A. R. (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 464(7288), 554–561.

    Article  CAS  PubMed  Google Scholar 

  17. LaMonica, B. E., Lui, J. H., Wang, X., & Kriegstein, A. R. (2012). OSVZ progenitors in the human cortex: An updated perspective on neurodevelopmental disease. Current Opinion in Neurobiology, 22(5), 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vitalis, T., & Verney, C. (2017). Sculpting cerebral cortex with serotonin in rodent and primate. In K. F. Shad (Ed.), Serotonin - A chemical messenger between all types of living cells. Rijeka: InTech. p. Ch. 05.

    Google Scholar 

  19. Nadarajah, B., Alifragis, P., Wong, R. O., & Parnavelas, J. G. (2003). Neuronal migration in the developing cerebral cortex: Observations based on real-time imaging. Cerebral Cortex, 13(6), 607–611.

    Article  CAS  PubMed  Google Scholar 

  20. Stanco, A., & Anton, E. S. (2013). Chapter 17 - Radial migration of neurons in the cerebral cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Cellular migration and formation of neuronal connections (pp. 317–330). Oxford: Academic Press.

    Chapter  Google Scholar 

  21. Sekine K, Tabata H, Nakajima K. Chapter 12 - Cell polarity and initiation of migration- Rubenstein, John L.R. In: Rakic P, editor. Cellular migration and formation of neuronal connections. Oxford, Academic Press; 2013. p. 231–244.

    Chapter  Google Scholar 

  22. Noctor, S. C., Cunningham, C. L., & Kriegstein, A. R. (2013). Chapter 16 - Radial migration in the developing cerebral cortex. In J. L. R. Rubenstein & P. Rakic (Eds.), Cellular migration and formation of neuronal connections (pp. 299–316). Oxford: Academic Press.

    Chapter  Google Scholar 

  23. Reiner, O., Karzbrun, E., Kshirsagar, A., & Kaibuchi, K. (2016). Regulation of neuronal migration, an emerging topic in autism spectrum disorders. Journal of Neurochemistry, 136(3), 440–456.

    Article  CAS  PubMed  Google Scholar 

  24. Tissir, F., & Goffinet, A. M. (2003). Reelin and brain development. Nature Reviews. Neuroscience, 4(6), 496–505.

    Article  CAS  PubMed  Google Scholar 

  25. Jossin, Y., Bar, I., Ignatova, N., Tissir, F., De Rouvroit, C. L., & Goffinet, A. M. (2003). The reelin signaling pathway: Some recent developments. Cerebral Cortex, 13(6), 627–633.

    Article  PubMed  Google Scholar 

  26. D'Arcangelo, G. (2014). Reelin in the years: Controlling neuronal migration and maturation in the mammalian brain. Advances in Neuroscience, 2014, 19.

    Article  Google Scholar 

  27. Boyle, M. P., Bernard, A., Thompson, C. L., Ng, L., Boe, A., Mortrud, M., et al. (2011). Cell-type-specific consequences of reelin deficiency in the mouse neocortex, hippocampus, and amygdala. The Journal of Comparative Neurology, 519(11), 2061–2089.

    Article  CAS  PubMed  Google Scholar 

  28. Kawauchi, T., & Hoshino, M. (2008). Molecular pathways regulating cytoskeletal organization and morphological changes in migrating neurons. Developmental Neuroscience, 30(1–3), 36–46.

    Article  CAS  PubMed  Google Scholar 

  29. Bar, I., Tissir, F., Lambert de Rouvroit, C., De Backer, O., & Goffinet, A. M. (2003). The gene encoding disabled-1 (DAB1), the intracellular adaptor of the reelin pathway, reveals unusual complexity in human and mouse. The Journal of Biological Chemistry, 278(8), 5802–5812.

    Article  CAS  PubMed  Google Scholar 

  30. Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S., et al. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron, 29(2), 353–366.

    Article  CAS  PubMed  Google Scholar 

  31. Gilmore, E. C., & Herrup, K. (2000). Cortical development: Receiving reelin. Current Biology, 10(4), R162–R166.

    Article  CAS  PubMed  Google Scholar 

  32. O'Kusky, J., & Ye, P. (2012). Neurodevelopmental effects of insulin-like growth factor signaling. Frontiers in Neuroendocrinology, 33(3), 230–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, J. P., Baker, J., Perkins, A. S., Robertson, E. J., & Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell, 75(1), 59–72.

    CAS  PubMed  Google Scholar 

  34. Nieto Guil, A. F., Oksdath, M., Weiss, L. A., Grassi, D. J., Sosa, L. J., Nieto, M., et al. (2017). IGF-1 receptor regulates dynamic changes in neuronal polarity during cerebral cortical migration. Scientific Reports, 7(1), 7703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gennarini, G., & Furley, A. (2017). Cell adhesion molecules in neural development and disease. Molecular and Cellular Neurosciences, 81, 1–3.

    Article  CAS  PubMed  Google Scholar 

  36. Miyamoto, Y., Sakane, F., & Hashimoto, K. (2015). N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adhesion & Migration, 9(3), 183–192.

    Article  CAS  Google Scholar 

  37. Kadowaki, M., Nakamura, S., Machon, O., Krauss, S., Radice, G. L., & Takeichi, M. (2007). N-cadherin mediates cortical organization in the mouse brain. Developmental Biology, 304(1), 22–33.

    Article  CAS  PubMed  Google Scholar 

  38. Shikanai, M., Nakajima, K., & Kawauchi, T. (2011). N-cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Communicative & Integrative Biology, 4(3), 326–330.

    Article  Google Scholar 

  39. Takeichi, M., Inuzuka, H., Shimamura, K., Fujimori, T., & Nagafuchi, A. (1990). Cadherin subclasses: Differential expression and their roles in neural morphogenesis. Cold Spring Harbor Symposia on Quantitative Biology, 55, 319–325.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki, S. C., & Takeichi, M. (2008). Cadherins in neuronal morphogenesis and function. Development, Growth & Differentiation, 50(Suppl 1), S119–S130.

    Article  CAS  Google Scholar 

  41. Bixby, J. L., Grunwald, G. B., & Bookman, R. J. (1994). Ca2+ influx and neurite growth in response to purified N-cadherin and laminin. The Journal of Cell Biology, 127(5), 1461–1475.

    Article  CAS  PubMed  Google Scholar 

  42. Gartner, A., Fornasiero, E. F., Munck, S., Vennekens, K., Seuntjens, E., Huttner, W. B., et al. (2012). N-cadherin specifies first asymmetry in developing neurons. The EMBO Journal, 31(8), 1893–1903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gartner, A., Fornasiero, E. F., & Dotti, C. G. (2012). N-cadherin: A new player in neuronal polarity. Cell Cycle, 11(12), 2223–2224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gartner, A., Fornasiero, E. F., & Dotti, C. G. (2015). Cadherins as regulators of neuronal polarity. Cell Adhesion & Migration, 9(3), 175–182.

    Article  CAS  Google Scholar 

  45. Nelson, W. J., & Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 303(5663), 1483–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chenn, A., & Walsh, C. A. (2003). Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cerebral Cortex, 13(6), 599–606.

    Article  PubMed  Google Scholar 

  47. Arikkath, J., & Reichardt, L. F. (2008). Cadherins and catenins at synapses: Roles in synaptogenesis and synaptic plasticity. Trends in Neurosciences, 31(9), 487–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Compagnucci, C., Piemonte, F., Sferra, A., Piermarini, E., & Bertini, E. (2016). The cytoskeletal arrangements necessary to neurogenesis. Oncotarget, 7(15), 19414–19429.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cearns, M. D., Escuin, S., Alexandre, P., Greene, N. D., & Copp, A. J. (2016). Microtubules, polarity and vertebrate neural tube morphogenesis. Journal of Anatomy, 229(1), 63–74.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Messier, P. E. (1978). Microtubules, interkinetic nuclear migration and neurulation. Experientia, 34(3), 289–296.

    Article  CAS  PubMed  Google Scholar 

  51. Breuss, M. W., Leca, I., Gstrein, T., Hansen, A. H., & Keays, D. A. (2017). Tubulins and brain development - the origins of functional specification. Molecular and Cellular Neurosciences, 84, 58–67.

    Article  CAS  PubMed  Google Scholar 

  52. Belvindrah, R., Natarajan, K., Shabajee, P., Bruel-Jungerman, E., Bernard, J., Goutierre, M., et al. (2017). Mutation of the alpha-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. The Journal of Cell Biology, 216(8), 2443–2461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Aiken, J., Moore, J. K., & Bates, E. A. (2019). TUBA1A mutations identified in lissencephaly patients dominantly disrupt neuronal migration and impair dynein activity. Human Molecular Genetics, 28, 1227.

    Article  CAS  PubMed  Google Scholar 

  54. Bamba, Y., Shofuda, T., Kato, M., Pooh, R. K., Tateishi, Y., Takanashi, J., et al. (2016). In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations. Molecular Brain, 9(1), 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Reiner, O. (2013). LIS1 and DCX: Implications for brain development and human disease in relation to microtubules. Scientifica, 2013, 393975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Reiner, O., & Sapir, T. (2013). LIS1 functions in normal development and disease. Current Opinion in Neurobiology, 23(6), 951–956.

    Article  CAS  PubMed  Google Scholar 

  57. Ayanlaja, A. A., Xiong, Y., Gao, Y., Ji, G., Tang, C., Abdikani Abdullah, Z., et al. (2017). Distinct features of doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Frontiers in Molecular Neuroscience, 10, 199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gleeson, J. G., Lin, P. T., Flanagan, L. A., & Walsh, C. A. (1999). Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron, 23(2), 257–271.

    Article  CAS  PubMed  Google Scholar 

  59. Bai, J., Ramos, R. L., Ackman, J. B., Thomas, A. M., Lee, R. V., & LoTurco, J. J. (2003). RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neuroscience, 6(12), 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  60. Allen, K. M., & Walsh, C. A. (1999). Genes that regulate neuronal migration in the cerebral cortex. Epilepsy Research, 36(2–3), 143–154.

    Article  CAS  PubMed  Google Scholar 

  61. Filipovic, R., Santhosh Kumar, S., Fiondella, C., & Loturco, J. (2012). Increasing doublecortin expression promotes migration of human embryonic stem cell-derived neurons. Stem Cells, 30(9), 1852–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsai, J. W., Chen, Y., Kriegstein, A. R., & Vallee, R. B. (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. The Journal of Cell Biology, 170(6), 935–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Takei, Y., Teng, J., Harada, A., & Hirokawa, N. (2000). Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. The Journal of Cell Biology, 150(5), 989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Teng, J., Takei, Y., Harada, A., Nakata, T., Chen, J., & Hirokawa, N. (2001). Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. The Journal of Cell Biology, 155(1), 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gallo, G. (2013). Mechanisms underlying the initiation and dynamics of neuronal filopodia: From neurite formation to synaptogenesis. International Review of Cell and Molecular Biology, 301, 95–156.

    Article  CAS  PubMed  Google Scholar 

  66. Lafont, F., Rouget, M., Rousselet, A., Valenza, C., & Prochiantz, A. (1993). Specific responses of axons and dendrites to cytoskeleton perturbations: An in vitro study. Journal of Cell Science, 104(Pt 2), 433–443.

    Article  PubMed  Google Scholar 

  67. Bentley, D., & Toroian-Raymond, A. (1986). Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature, 323(6090), 712–715.

    Article  CAS  PubMed  Google Scholar 

  68. Azzarelli, R., Kerloch, T., & Pacary, E. (2014). Regulation of cerebral cortex development by Rho GTPases: Insights from in vivo studies. Frontiers in Cellular Neuroscience, 8, 445.

    PubMed  Google Scholar 

  69. Kawauchi, T., Chihama, K., Nabeshima, Y., & Hoshino, M. (2003). The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. The EMBO Journal, 22(16), 4190–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Konno, D., Yoshimura, S., Hori, K., Maruoka, H., & Sobue, K. (2005). Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons. The Journal of Biological Chemistry, 280(6), 5082–5088.

    Article  CAS  PubMed  Google Scholar 

  71. Heng, J. I., Nguyen, L., Castro, D. S., Zimmer, C., Wildner, H., Armant, O., et al. (2008). Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature, 455(7209), 114–118.

    Article  CAS  PubMed  Google Scholar 

  72. Pacary, E., Heng, J., Azzarelli, R., Riou, P., Castro, D., Lebel-Potter, M., et al. (2011). Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling. Neuron, 69(6), 1069–1084.

    Article  CAS  PubMed  Google Scholar 

  73. Chen, L., Liao, G., Waclaw, R. R., Burns, K. A., Linquist, D., Campbell, K., et al. (2007). Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons. The Journal of Neuroscience, 27(14), 3884–3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, T., Sun, Y., Zhang, F., Zhu, Y., Shi, L., Li, H., et al. (2012). POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration. Cell Reports, 2(3), 640–651.

    Article  CAS  PubMed  Google Scholar 

  75. Kassai, H., Terashima, T., Fukaya, M., Nakao, K., Sakahara, M., Watanabe, M., et al. (2008). Rac1 in cortical projection neurons is selectively required for midline crossing of commissural axonal formation. The European Journal of Neuroscience, 28(2), 257–267.

    Article  PubMed  Google Scholar 

  76. Nguyen, L., Besson, A., Heng, J. I., Schuurmans, C., Teboul, L., Parras, C., et al. (2006). p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes & Development, 20(11), 1511–1524.

    Article  CAS  Google Scholar 

  77. Tang, J., Ip, J. P., Ye, T., Ng, Y. P., Yung, W. H., Wu, Z., et al. (2014). Cdk5-dependent Mst3 phosphorylation and activity regulate neuronal migration through RhoA inhibition. The Journal of Neuroscience, 34(22), 7425–7436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cappello, S., Bohringer, C. R., Bergami, M., Conzelmann, K. K., Ghanem, A., Tomassy, G. S., et al. (2012). A radial glia-specific role of RhoA in double cortex formation. Neuron, 73(5), 911–924.

    Article  CAS  PubMed  Google Scholar 

  79. Ho, T. T., Merajver, S. D., Lapiere, C. M., Nusgens, B. V., & Deroanne, C. F. (2008). RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. The Journal of Biological Chemistry, 283(31), 21588–21598.

    Article  CAS  PubMed  Google Scholar 

  80. Newey, S. E., Velamoor, V., Govek, E. E., & Van Aelst, L. (2005). Rho GTPases, dendritic structure, and mental retardation. Journal of Neurobiology, 64(1), 58–74.

    Article  CAS  PubMed  Google Scholar 

  81. Govek, E. E., Newey, S. E., & Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes & Development, 19(1), 1–49.

    Article  CAS  Google Scholar 

  82. Gu, H., Yu, S. P., Gutekunst, C. A., Gross, R. E., & Wei, L. (2013). Inhibition of the Rho signaling pathway improves neurite outgrowth and neuronal differentiation of mouse neural stem cells. International Journal of Physiology, Pathophysiology and Pharmacology, 5(1), 11–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jeon, C. Y., Moon, M. Y., Kim, J. H., Kim, H. J., Kim, J. G., Li, Y., et al. (2012). Control of neurite outgrowth by RhoA inactivation. Journal of Neurochemistry, 120(5), 684–698.

    Article  CAS  PubMed  Google Scholar 

  84. Garvalov, B. K., Flynn, K. C., Neukirchen, D., Meyn, L., Teusch, N., Wu, X., et al. (2007). Cdc42 regulates cofilin during the establishment of neuronal polarity. The Journal of Neuroscience, 27(48), 13117–13129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosario, M., Schuster, S., Juttner, R., Parthasarathy, S., Tarabykin, V., & Birchmeier, W. (2012). Neocortical dendritic complexity is controlled during development by NOMA-GAP-dependent inhibition of Cdc42 and activation of cofilin. Genes & Development, 26(15), 1743–1757.

    Article  CAS  Google Scholar 

  86. Yokota, Y., Eom, T. Y., Stanco, A., Kim, W. Y., Rao, S., Snider, W. D., et al. (2010). Cdc42 and Gsk3 modulate the dynamics of radial glial growth, inter-radial glial interactions and polarity in the developing cerebral cortex. Development, 137(23), 4101–4110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gleeson, J. G., & Walsh, C. A. (2000). Neuronal migration disorders: From genetic diseases to developmental mechanisms. Trends in Neurosciences, 23(8), 352–359.

    Article  CAS  PubMed  Google Scholar 

  88. Desikan, R. S., & Barkovich, A. J. (2016). Malformations of cortical development. Annals of Neurology, 80(6), 797–810.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shu, T., Ayala, R., Nguyen, M. D., Xie, Z., Gleeson, J. G., & Tsai, L. H. (2004). Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron, 44(2), 263–277.

    Article  CAS  PubMed  Google Scholar 

  90. Jiang, X., & Nardelli, J. (2016). Cellular and molecular introduction to brain development. Neurobiology of Disease, 92(Pt A), 3–17.

    Article  CAS  PubMed  Google Scholar 

  91. Lasser, M., Tiber, J., & Lowery, L. A. (2018). The role of the microtubule cytoskeleton in neurodevelopmental disorders. Frontiers in Cellular Neuroscience, 12, 165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Parrini, E., Conti, V., Dobyns, W. B., & Guerrini, R. (2016). Genetic basis of brain malformations. Molecular Syndromology, 7(4), 220–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., et al. (2007). The role of RELN in lissencephaly and neuropsychiatric disease. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 144B(1), 58–63.

    Article  CAS  Google Scholar 

  94. Crino, P. (2001). New Reln mutation associated with lissencephaly and epilepsy. Epilepsy Currents, 1(2), 72.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Riikonen, R. (2017). Insulin-like growth factors in the pathogenesis of neurological diseases in children. International Journal of Molecular Sciences, 18(10), 2056.

    Article  PubMed Central  CAS  Google Scholar 

  96. Sheen, V. L. (2012). Periventricular heterotopia: Shuttling of proteins through vesicles and actin in cortical development and disease. Scientifica, 2012, 480129.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fox, J. W., Lamperti, E. D., Eksioglu, Y. Z., Hong, S. E., Feng, Y., Graham, D. A., et al. (1998). Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron, 21(6), 1315–1325.

    Article  CAS  PubMed  Google Scholar 

  98. Riviere, J. B., van Bon, B. W., Hoischen, A., Kholmanskikh, S. S., O'Roak, B. J., Gilissen, C., et al. (2012). De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nature Genetics, 44(4), 440–444, S1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Di Donato, N., Rump, A., Koenig, R., Der Kaloustian, V. M., Halal, F., Sonntag, K., et al. (2014). Severe forms of Baraitser-Winter syndrome are caused by ACTB mutations rather than ACTG1 mutations. European Journal of Human Genetics, 22(2), 179–183.

    Article  PubMed  CAS  Google Scholar 

  100. Uppal, N., & Hof, P. R. (2013). Chapter 3.6 - Discrete cortical neuropathology in autism spectrum disorders. In The neuroscience of autism spectrum disorders (pp. 313–325). San Diego: Academic Press.

    Chapter  Google Scholar 

  101. Schumann, C. M., Noctor, S. C., & Amaral, D. G. (2011). Autism spectrum disorders. In D. G. Amaral, D. Geschwind, & D. Dawson (Eds.), Neuropathology of autism spectrum disorders: Postmortem studies. Oxford: Oxford University Press.

    Google Scholar 

  102. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145.

    Article  CAS  PubMed  Google Scholar 

  103. Blatt, G. J. (2012). The neuropathology of autism. Scientifica, 2012, 703675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23(2–3), 183–187.

    Article  PubMed  Google Scholar 

  105. Varghese, M., Keshav, N., Jacot-Descombes, S., Warda, T., Wicinski, B., Dickstein, D. L., et al. (2017). Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathologica, 134(4), 537–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Research, 1380, 175–186.

    Article  CAS  PubMed  Google Scholar 

  107. Hampson, D. R., & Blatt, G. J. (2015). Autism spectrum disorders and neuropathology of the cerebellum. Frontiers in Neuroscience, 9, 420.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gadad, B. S., Hewitson, L., Young, K. A., & German, D. C. (2013). Neuropathology and animal models of autism: Genetic and environmental factors. Autism Research and Treatment, 2013, 731935.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Santos, M., Uppal, N., Butti, C., Wicinski, B., Schmeidler, J., Giannakopoulos, P., et al. (2011). Von Economo neurons in autism: A stereologic study of the frontoinsular cortex in children. Brain Research, 1380, 206–217.

    Article  CAS  PubMed  Google Scholar 

  110. Wegiel, J., Kuchna, I., Nowicki, K., Imaki, H., Wegiel, J., Marchi, E., et al. (2010). The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathologica, 119(6), 755–770.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fatemi, S. H., & Folsom, T. D. (2009). The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia Bulletin, 35(3), 528–548.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen, R., Jiao, Y., & Herskovits, E. H. (2011). Structural MRI in autism spectrum disorder. Pediatric Research, 69(5 Pt 2), 63R–68R.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kucharsky Hiess, R., Alter, R., Sojoudi, S., Ardekani, B. A., Kuzniecky, R., & Pardoe, H. R. (2015). Corpus callosum area and brain volume in autism spectrum disorder: Quantitative analysis of structural MRI from the ABIDE database. Journal of Autism and Developmental Disorders, 45(10), 3107–3114.

    Article  CAS  PubMed  Google Scholar 

  114. Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., et al. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. The Journal of Neuroscience, 30(12), 4419–4427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zielinski, B. A., Prigge, M. B., Nielsen, J. A., Froehlich, A. L., Abildskov, T. J., Anderson, J. S., et al. (2014). Longitudinal changes in cortical thickness in autism and typical development. Brain, 137(Pt 6), 1799–1812.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dementieva, Y. A., Vance, D. D., Donnelly, S. L., Elston, L. A., Wolpert, C. M., Ravan, S. A., et al. (2005). Accelerated head growth in early development of individuals with autism. Pediatric Neurology, 32(2), 102–108.

    Article  PubMed  Google Scholar 

  117. Fombonne, E., Roge, B., Claverie, J., Courty, S., & Fremolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29(2), 113–119.

    Article  CAS  PubMed  Google Scholar 

  118. Anagnostou, E., & Taylor, M. J. (2011). Review of neuroimaging in autism spectrum disorders: What have we learned and where we go from here. Molecular Autism, 2(1), 4.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hardan, A. Y., Pabalan, M., Gupta, N., Bansal, R., Melhem, N. M., Fedorov, S., et al. (2009). Corpus callosum volume in children with autism. Psychiatry Research, 174(1), 57–61.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Frazier, T. W., & Hardan, A. Y. (2009). A meta-analysis of the corpus callosum in autism. Biological Psychiatry, 66(10), 935–941.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., & Lawrie, S. M. (2008). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23(4), 289–299.

    Article  PubMed  Google Scholar 

  122. Ameis, S. H., Fan, J., Rockel, C., Voineskos, A. N., Lobaugh, N. J., Soorya, L., et al. (2011). Impaired structural connectivity of socio-emotional circuits in autism spectrum disorders: A diffusion tensor imaging study. PLoS One, 6(11), e28044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hardan, A. Y., Libove, R. A., Keshavan, M. S., Melhem, N. M., & Minshew, N. J. (2009). A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism. Biological Psychiatry, 66(4), 320–326.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Neale, B. M., Kou, Y., Liu, L., Ma'ayan, A., Samocha, K. E., Sabo, A., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Deriziotis, P., O'Roak, B. J., Graham, S. A., Estruch, S. B., Dimitropoulou, D., Bernier, R. A., et al. (2014). De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 5, 4954.

    Article  CAS  PubMed  Google Scholar 

  126. Huang, T. N., & Hsueh, Y. P. (2015). Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders. Frontiers in Neuroscience, 9, 406.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Traylor, R. N., Dobyns, W. B., Rosenfeld, J. A., Wheeler, P., Spence, J. E., Bandholz, A. M., et al. (2012). Investigation of TBR1 hemizygosity: Four individuals with 2q24 microdeletions. Molecular Syndromology, 3(3), 102–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hamdan, F. F., Srour, M., Capo-Chichi, J. M., Daoud, H., Nassif, C., Patry, L., et al. (2014). De novo mutations in moderate or severe intellectual disability. PLoS Genetics, 10(10), e1004772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Bedogni, F., Hodge, R. D., Elsen, G. E., Nelson, B. R., Daza, R. A., Beyer, R. P., et al. (2010). Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proceedings of the National Academy of Sciences of the United States of America, 107(29), 13129–13134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Packer, A. (2016). Neocortical neurogenesis and the etiology of autism spectrum disorder. Neuroscience and Biobehavioral Reviews, 64, 185–195.

    Article  PubMed  Google Scholar 

  131. Gallagher, D., Voronova, A., Zander, M. A., Cancino, G. I., Bramall, A., Krause, M. P., et al. (2015). Ankrd11 is a chromatin regulator involved in autism that is essential for neural development. Developmental Cell, 32(1), 31–42.

    Article  CAS  PubMed  Google Scholar 

  132. De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87(6), 1215–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tuoc, T. C., Narayanan, R., & Stoykova, A. (2013). BAF chromatin remodeling complex: Cortical size regulation and beyond. Cell Cycle, 12(18), 2953–2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tuoc, T. C., Boretius, S., Sansom, S. N., Pitulescu, M. E., Frahm, J., Livesey, F. J., et al. (2013). Chromatin regulation by BAF170 controls cerebral cortical size and thickness. Developmental Cell, 25(3), 256–269.

    Article  CAS  PubMed  Google Scholar 

  136. Chen, Y., Huang, W. C., Sejourne, J., Clipperton-Allen, A. E., & Page, D. T. (2015). Pten mutations Alter brain growth trajectory and allocation of cell types through elevated beta-catenin signaling. The Journal of Neuroscience, 35(28), 10252–10267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Strauss, K. A., Puffenberger, E. G., Huentelman, M. J., Gottlieb, S., Dobrin, S. E., Parod, J. M., et al. (2006). Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. The New England Journal of Medicine, 354(13), 1370–1377.

    Article  CAS  PubMed  Google Scholar 

  138. Bakkaloglu, B., O'Roak, B. J., Louvi, A., Gupta, A. R., Abelson, J. F., Morgan, T. M., et al. (2008). Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. American Journal of Human Genetics, 82(1), 165–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., et al. (2008). Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. American Journal of Human Genetics, 82(1), 150–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Conti, S., Condo, M., Posar, A., Mari, F., Resta, N., Renieri, A., et al. (2012). Phosphatase and tensin homolog (PTEN) gene mutations and autism: Literature review and a case report of a patient with Cowden syndrome, autistic disorder, and epilepsy. Journal of Child Neurology, 27(3), 392–397.

    Article  PubMed  Google Scholar 

  141. Wiegreffe, C., Simon, R., Peschkes, K., Kling, C., Strehle, M., Cheng, J., et al. (2015). Bcl11a (Ctip1) controls migration of cortical projection neurons through regulation of Sema3c. Neuron, 87(2), 311–325.

    Article  CAS  PubMed  Google Scholar 

  142. Li, X., Xiao, J., Frohlich, H., Tu, X., Li, L., Xu, Y., et al. (2015). Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PLoS One, 10(5), e0127671e.

    Article  CAS  Google Scholar 

  143. Miyoshi, G., & Fishell, G. (2012). Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron, 74(6), 1045–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. La Fata, G., Gartner, A., Dominguez-Iturza, N., Dresselaers, T., Dawitz, J., Poorthuis, R. B., et al. (2014). FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nature Neuroscience, 17(12), 1693–1700.

    Article  PubMed  CAS  Google Scholar 

  145. Boitard, M., Bocchi, R., Egervari, K., Petrenko, V., Viale, B., Gremaud, S., et al. (2015). Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex. Cell Reports, 10(8), 1349–1361.

    Article  CAS  PubMed  Google Scholar 

  146. Hori, K., & Hoshino, M. (2017). Neuronal migration and AUTS2 syndrome. Brain Sciences, 7(12), 54.

    Article  PubMed Central  CAS  Google Scholar 

  147. Hori, K., Nagai, T., Shan, W., Sakamoto, A., Taya, S., Hashimoto, R., et al. (2014). Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Reports, 9(6), 2166–2179.

    Article  CAS  PubMed  Google Scholar 

  148. Yoo, H. (2015). Genetics of autism Spectrum disorder: Current status and possible clinical applications. Exp Neurobiol., 24(4), 257–272.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Buxbaum, J. D. (2009). Multiple rare variants in the etiology of autism spectrum disorders. Dialogues in Clinical Neuroscience, 11(1), 35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Weiner, D. J., Wigdor, E. M., Ripke, S., Walters, R. K., Kosmicki, J. A., Grove, J., et al. (2017). Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nature Genetics, 49(7), 978–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bray, N. (2017). Neurodevelopmental disorders: Converging on autism spectrum disorder. Nature Reviews. Neuroscience, 18(2), 67.

    Article  CAS  PubMed  Google Scholar 

  152. Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., et al. (2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. American Journal of Human Genetics, 94(5), 677–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Berg, J. M., & Geschwind, D. H. (2012). Autism genetics: Searching for specificity and convergence. Genome Biology, 13(7), 247.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Gupta, S., Ellis, S. E., Ashar, F. N., Moes, A., Bader, J. S., Zhan, J., et al. (2014). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nature Communications, 5, 5748.

    Article  CAS  PubMed  Google Scholar 

  155. Gokoolparsadh, A., Sutton, G. J., Charamko, A., Green, N. F., Pardy, C. J., & Voineagu, I. (2016). Searching for convergent pathways in autism spectrum disorders: Insights from human brain transcriptome studies. Cellular and Molecular Life Sciences, 73(23), 4517–4530.

    Article  CAS  PubMed  Google Scholar 

  156. Voineagu, I., & Eapen, V. (2013). Converging pathways in autism spectrum disorders: Interplay between synaptic dysfunction and immune responses. Frontiers in Human Neuroscience, 7, 738.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474(7351), 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wen, Y., Alshikho, M. J., & Herbert, M. R. (2016). Pathway network analyses for autism reveal multisystem involvement, major overlaps with other diseases and convergence upon MAPK and calcium signaling. PLoS One, 11(4), e0153329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Luo, W., Zhang, C., Jiang, Y. H., & Brouwer, C. R. (2018). Systematic reconstruction of autism biology from massive genetic mutation profiles. Science Advances, 4(4), e1701799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Sanders, S. J. (2015). First glimpses of the neurobiology of autism spectrum disorder. Current Opinion in Genetics & Development, 33, 80–92.

    Article  CAS  Google Scholar 

  161. Ernst, C. (2016). Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends in Neurosciences, 39(5), 290–299.

    Article  CAS  PubMed  Google Scholar 

  162. Stevens, H. E., Smith, K. M., Rash, B. G., & Vaccarino, F. M. (2010). Neural stem cell regulation, fibroblast growth factors, and the developmental origins of neuropsychiatric disorders. Frontiers in Neuroscience, 4, 59.

    PubMed  PubMed Central  Google Scholar 

  163. Sacco, R., Cacci, E., & Novarino, G. (2018). Neural stem cells in neuropsychiatric disorders. Current Opinion in Neurobiology, 48, 131–138.

    Article  CAS  PubMed  Google Scholar 

  164. Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle, R. A., et al. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155(5), 997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Parikshak, N. N., Luo, R., Zhang, A., Won, H., Lowe, J. K., Chandran, V., et al. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155(5), 1008–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sara Ballouz, Paul Pavlidis, Jesse Gillis, Using predictive specificity to determine when gene set analysis is biologically meaningful. Nucleic Acids Research:gkw957.

    Google Scholar 

  167. Satterstrom F. K., Kosmicki J A., Wang J, Breen M S., De Rubeis S, Joon-Yong An, et al. (2020) Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 180(3):568–584.e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gandal, M. J., Haney, J. R., Parikshak, N. N., Leppa, V., Ramaswami, G., Hartl, C., et al. (2018). Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 359(6376), 693–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hoeffer, C. A., Sanchez, E., Hagerman, R. J., Mu, Y., Nguyen, D. V., Wong, H., et al. (2012). Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes, Brain, and Behavior, 11(3), 332–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Olson, C. O., Pejhan, S., Kroft, D., Sheikholeslami, K., Fuss, D., Buist, M., et al. (2018). MECP2 mutation interrupts nucleolin-mTOR-P70S6K Signaling in Rett syndrome patients. Frontiers in Genetics, 9, 635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ricciardi, S., Boggio, E. M., Grosso, S., Lonetti, G., Forlani, G., Stefanelli, G., et al. (2011). Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Human Molecular Genetics, 20(6), 1182–1196.

    Article  CAS  PubMed  Google Scholar 

  172. Xing, X., Zhang, J., Wu, K., Cao, B., Li, X., Jiang, F., et al. (2019). Suppression of Akt-mTOR pathway rescued the social behavior in Cntnap2-deficient mice. Scientific Reports, 9(1), 3041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Rosina, E., Battan, B., Siracusano, M., Di Criscio, L., Hollis, F., Pacini, L., et al. (2019). Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Translational Psychiatry, 9(1), 50.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  175. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  176. Yamanaka, S. (2006). Molecular mechanisms underlying pluripotency of embryonic stem cells. Seikagaku, 78(1), 27–33.

    CAS  PubMed  Google Scholar 

  177. Okita, K., & Yamanaka, S. (2006). Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Current Stem Cell Research & Therapy, 1(1), 103–111.

    Article  CAS  Google Scholar 

  178. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  179. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  180. Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pasca, S. P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., Pasca, A. M., et al. (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 17(12), 1657–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Urbach, A., Bar-Nur, O., Daley, G. Q., & Benvenisty, N. (2010). Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell, 6(5), 407–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Krey, J. F., Pasca, S. P., Shcheglovitov, A., Yazawa, M., Schwemberger, R., Rasmusson, R., et al. (2013). Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nature Neuroscience, 16(2), 201–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tian, Y., Voineagu, I., Pasca, S. P., Won, H., Chandran, V., Horvath, S., et al. (2014). Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Medicine, 6(10), 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Mor-Shaked, H., & Eiges, R. (2016). Modeling fragile X syndrome using human pluripotent stem cells. Genes, 7(10), 77.

    Article  PubMed Central  CAS  Google Scholar 

  186. Li, M., Zhao, H., Ananiev, G. E., Musser, M. T., Ness, K. H., Maglaque, D. L., et al. (2017). Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells, 35(1), 158–169.

    Article  CAS  PubMed  Google Scholar 

  187. Bhattacharyya, A., & Zhao, X. (2016). Human pluripotent stem cell models of Fragile X syndrome. Molecular and Cellular Neurosciences, 73, 43–51.

    Article  CAS  PubMed  Google Scholar 

  188. Doers, M. E., Musser, M. T., Nichol, R., Berndt, E. R., Baker, M., Gomez, T. M., et al. (2014). iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells and Development, 23(15), 1777–1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Shcheglovitov, A., Shcheglovitova, O., Yazawa, M., Portmann, T., Shu, R., Sebastiano, V., et al. (2013). SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature, 503(7475), 267–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yi, F., Danko, T., Botelho, S. C., Patzke, C., Pak, C., Wernig, M., et al. (2016). Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science, 352(6286), aaf2669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Kathuria, A., Nowosiad, P., Jagasia, R., Aigner, S., Taylor, R. D., Andreae, L. C., et al. (2018). Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Molecular Psychiatry, 23(3), 735–746.

    Article  CAS  PubMed  Google Scholar 

  192. Deshpande, A., Yadav, S., Dao, D. Q., Wu, Z. Y., Hokanson, K. C., Cahill, M. K., et al. (2017). Cellular phenotypes in human iPSC-derived neurons from a genetic model of autism spectrum disorder. Cell Reports, 21(10), 2678–2687.

    Article  CAS  PubMed  Google Scholar 

  193. Flaherty, E., Deranieh, R. M., Artimovich, E., Lee, I. S., Siegel, A. J., Levy, D. L., et al. (2017). Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ Schizophrenia, 3, 35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346), 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Brennand, K., Savas, J. N., Kim, Y., Tran, N., Simone, A., Hashimoto-Torii, K., et al. (2015). Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Molecular Psychiatry, 20(3), 361–368.

    Article  CAS  PubMed  Google Scholar 

  196. Griesi-Oliveira, K., Acab, A., Gupta, A. R., Sunaga, D. Y., Chailangkarn, T., Nicol, X., et al. (2015). Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry, 20(11), 1350–1365.

    Article  CAS  PubMed  Google Scholar 

  197. Mariani, J., Coppola, G., Zhang, P., Abyzov, A., Provini, L., Tomasini, L., et al. (2015). FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 162(2), 375–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Marchetto, M. C., Belinson, H., Tian, Y., Freitas, B. C., Fu, C., Vadodaria, K., et al. (2017). Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 22(6), 820–835.

    Article  CAS  PubMed  Google Scholar 

  199. Liu, X., Campanac, E., Cheung, H. H., Ziats, M. N., Canterel-Thouennon, L., Raygada, M., et al. (2017). Idiopathic autism: Cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Molecular Neurobiology, 54(6), 4507–4523.

    Article  CAS  PubMed  Google Scholar 

  200. Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: History, mechanisms, and applications. Genes & Development, 24(20), 2239–2263.

    Article  CAS  Google Scholar 

  201. Schwartzentruber, J., Foskolou, S., Kilpinen, H., Rodrigues, J., Alasoo, K., Knights, A. J., et al. (2018). Molecular and functional variation in iPSC-derived sensory neurons. Nature Genetics, 50(1), 54–61.

    Article  CAS  PubMed  Google Scholar 

  202. Vitale, A. M., Matigian, N. A., Ravishankar, S., Bellette, B., Wood, S. A., Wolvetang, E. J., et al. (2012). Variability in the generation of induced pluripotent stem cells: Importance for disease modeling. Stem Cells Translational Medicine, 1(9), 641–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vigilante, A., Laddach, A., Moens, N., Meleckyte, R., Leha, A., Ghahramani, A., et al. (2019). Identifying extrinsic versus intrinsic drivers of variation in cell behavior in human iPSC lines from healthy donors. Cell Reports, 26(8), 2078–2087. e3.

    Article  CAS  PubMed  Google Scholar 

  204. Carcamo-Orive, I., Hoffman, G. E., Cundiff, P., Beckmann, N. D., D'Souza, S. L., Knowles, J. W., et al. (2017). Analysis of transcriptional variability in a large human iPSC library reveals genetic and non-genetic determinants of heterogeneity. Cell Stem Cell, 20(4), 518–532. e9.

    Article  CAS  PubMed  Google Scholar 

  205. Volpato, V., Smith, J., Sandor, C., Ried, J. S., Baud, A., Handel, A., et al. (2018). Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: A multi-site omics study. Stem Cell Reports, 11(4), 897–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E. M., Antosiewicz-Bourget, J., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 27(4), 353–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., et al. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics, 41(12), 1350–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467(7313), 285–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Falk, A., Heine, V. M., Harwood, A. J., Sullivan, P. F., Peitz, M., Brüstle, O., Shen, S., Sun, Y-M., Glover, J. C., Posthuma, D., Djurovic, S. (2016) Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Molecular Psychiatry 21(9):1167–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Halevy, T., & Urbach, A. (2014). Comparing ESC and iPSC-based models for human genetic disorders. Journal of Clinical Medicine, 3(4), 1146–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Williams, M., Prem, S., Zhou, X., Matteson, P., Yeung, P. L., & Lu, C. W., et al. (2018). Rapid detection of neurodevelopmental phenotypes in human neural precursor cells (NPCs). Journal of Visualized Experiments (133). https://doi.org/10.3791/56628

  214. Rossman, I. T., Lin, L., Morgan, K. M., Digiovine, M., Van Buskirk, E. K., Kamdar, S., et al. (2014). Engrailed2 modulates cerebellar granule neuron precursor proliferation, differentiation and insulin-like growth factor 1 signaling during postnatal development. Molecular Autism, 5(1), 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments This work was supported by the New Jersey Governor’s Council for Medical Research and Treatment of Autism (CAUT13APS010; CAUT14APL031; CAUT15APL041, CAUT19APL014) and Nancy Lurie Marks Family Foundation for Dr. DiCicco-Bloom and Dr. Millonig; NJ Health Foundation (PC 63-19) for Dr. Millonig; Mindworks Charitable Lead Trust, and the Jewish Community Foundation of Greater MetroWest for Dr. DiCicco-Bloom; and the Rutgers Graduate School of Biomedical Sciences for Dr. Prem and Dr. DiCicco-Bloom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel DiCicco-Bloom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prem, S., Millonig, J.H., DiCicco-Bloom, E. (2020). Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. In: DiCicco-Bloom, E., Millonig, J. (eds) Neurodevelopmental Disorders . Advances in Neurobiology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-45493-7_5

Download citation

Publish with us

Policies and ethics