Skip to main content

Dynamics of Separation Characteristics of Sieving and Flow Classification Processes

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

In spite of the broad range of applications of flow and sieve classification, the physical phenomena for higher particle loadings are not completely understood. As a starting point, common models such as the one of Molerus may be used and optimized to include particle-particle and particle-wall collisions. In this contribution, it is investigated to which extent single particle models may be employed to describe the performance of a deflector wheel classifier and a circular vibratory screening machine at higher loadings. For the sieving process, the Molerus model was modified with a selectivity parameter, while for the deflector wheel, a differentiation of particles with low and high Stokes numbers was made. For high Stokes numbers, in a first approximation, the particularities of the airflow can be neglected, but the impaction behavior on the wheel blades needs to be taken into account. With the detailed knowledge of the mean airflow, a much better prediction of the separation curve can be obtained. In particular, the dynamic aspects of flow and sieving classification have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

T(x):

Separation efficiency (–)

x:

Particle size (m)

x′:

Dimensionless particle size (–)

k:

Coefficient for the sharpness of cut (–)

COR:

Coefficient of restitution (–)

v:

Velocity (m s−1)

η:

Viscosity (Pa s)

ρ:

Density (kg m−3)

H:

Particle layer height (cm)

τ:

Characteristic particle relaxation time (s)

τ*:

Particle cloud relaxation time (s)

\({\dot{\text{V}}}\) :

Carrier gas volume flow rate (m3 s−1)

R:

Wheel radius (m)

h:

Height of the openings in the deflector wheel (m)

U:

Circumference (m)

Ψ2D:

2D Sphericity (–)

SEM:

Scanning electron microscope

σ:

Standard deviation (depends on related variable)

E:

Kinetic energy (J)

JKR:

Johnson-Kendall-Roberts

p:

Pressure (Pa)

E*:

Average Young’s modulus (Pa)

υ:

Poisson ratio (–)

Θ:

Angle related to the deflector wheel blade (°)

L:

Impaction length (m)

f:

Revolution rate (s−1), fine material fraction (–)

cD:

Drag coefficient (–)

Re:

Particle Reynolds number (–)

κ:

Sharpness of cut (–)

F:

Force (N)

c:

Coarse material fraction (–)

Q:

Distribution sum function (–)

a:

“Dead flow” parameter (–)

α, β:

Measure of selectivity (–)

Γ:

Dimensionless acceleration number (–)

A:

Amplitude (m)

ω:

Angular velocity (° s−1)

g:

Gravitational constant (m s−2)

q:

Density distribution (m−1)

\({\dot{\text{m}}}\) :

Massflow rate (kg s−1)

KV:

Throwing coefficient (–)

p:

Particle

air:

Air

eff:

Effective

f:

Fines

G:

Coarse

A:

Feed

25:

Particle size related to T(x) = 0.25

50:

Mean particle size

75:

Particle size related to T(x) = 0.75

3:

Mass-weighted

t:

Cut particle size related to T(x) = 0.50

v:

Volume equivalent

area-equivalent:

Projection area equivalent

perimeter-equivalent:

Projection perimeter equivalent

r:

Rebound

i:

Approach

0:

Initial

imp:

Absolute normal impaction

rad:

Radial

tan:

Tangential

rel:

Relative

w:

Wall

kin.:

Kinetic

References

  1. Teipel, U.: Energetic Materials: Particles Processing and Characterization. Wiley-VCH Verlag, Weinheim (2006). ISBN 3-527-30240-9

    Google Scholar 

  2. Plitt, L.R.: The analysis of solid-solid separations in classifiers. CIM Bull. 64 (1971)

    Google Scholar 

  3. Rogers, R.S.C.: A classification function for vibrating screens. Powder Technol. 31, 135 (1982)

    Article  Google Scholar 

  4. Molerus, O., Hoffmann, H.: Darstellung von Windsichtertrennkurven durch ein stochastisches Modell. Chem. Ing. Tech. 41(5+6), 340–344 (1969)

    Google Scholar 

  5. Trawinski, H.: Die mathematische Formulierung der Tromp-Kurve. Aufbereitungstechnik 17, 248–254, 449–459 (1976)

    Google Scholar 

  6. Soldinger, M.: Influence of particle size and bed thickness on the screening process. Miner. Eng. 13, 297–312 (2000)

    Article  CAS  Google Scholar 

  7. Deghani, A., Monhemius, A.J., Gochin, R.J.: Evaluating the Nakajim et al. model for rectangular-aperture screens. Miner. Eng. 15, 1089–1094 (2002)

    Google Scholar 

  8. Nakajima, Y., Whiten, W.J.: Method for measurement of particle-shape distribution by sieves. Trans. Inst. Min. Metall. 87, C194–C203 (1978)

    Google Scholar 

  9. Nakajima, Y., Whiten, W.J.: Behaviour of non-spherical particles in screening. Trans. Inst. Min. Metall. 88, C88–C92 (1979)

    Google Scholar 

  10. Hatch, C.C., Mular, A.L.: Simulation of the Brenda Mines Ltd. secondary crusher. In: SME-AIME Annual Meeting, pp. 54–79 (1979)

    Google Scholar 

  11. Rumpf, H., Leschonski, K.: Prinzipien und neuere Verfahren der Windsichtung. Chem. Ing. Tech. 21, 1231–1241 (1967)

    Article  Google Scholar 

  12. Senden, M.M.G., Tels, M.: Trennschärfe und mittlere Teilchenverweilzeit im Gleichgewichts-sichter. Chem. Ing. Tech. 530 (1977)

    Google Scholar 

  13. Senden, M.M.G.: Stochastic models for individual particle behavior in straight and zig zag air classifier. Eindhoven University of Technology (1979)

    Google Scholar 

  14. Schubert, H., Al, E.: Mechanische Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie (1977)

    Google Scholar 

  15. Husemann, K.: Modellierung des Sichtprozesses am Abweiserrad/Modelling of a classifying process using a deflecting wheel. Aufbereitungstechnik 31, 359–366 (1990)

    CAS  Google Scholar 

  16. Furchner, B., Zampini, S.: Air classifying. Ullmann’s Encycl. Ind. Chem. 2, 215–234 (2012)

    Google Scholar 

  17. Spötter, C.: Dynamik der Trenncharakteristik eines Abweiseradsichters. TU-Clausthal (2018)

    Google Scholar 

  18. Richardson, J.F., Zaki, W.N.: The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 3, 65–73 (1954)

    Article  CAS  Google Scholar 

  19. Spötter, C., et al.: Separation curves of screening and air classifying processes at low material loadings. Chem. Ing. Tech. 89, 1726–1738 (2017)

    Article  Google Scholar 

  20. Stender, M., Legenhausen, K., Weber, A.P.: Visualisierung der Partikelbewegung in einem Abweiseradsichter. Chem. Ing. Tech. 87, 1392–1401 (2015)

    Article  CAS  Google Scholar 

  21. Thornton, C., Cummins, S.J., Cleary, P.W.: On elastic-plastic normal contact force models, with and without adhesion. Powder Technol. 315, 339–346 (2017)

    Article  CAS  Google Scholar 

  22. Thornton, C., Ning, Z.: A theoretical model for the sick/bounce behaviour of adhesive, elastic-plastic spheres. Powder Technol. 99, 154–162 (1998)

    Article  CAS  Google Scholar 

  23. Kleinhans, U., Wieland, C., Frandsen, F.J., Spliethoff, H.: Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior. Prog. Energy Combust. Sci. 68, 65–168 (2018)

    Article  Google Scholar 

  24. Antonyuk, S.: Deformations- und Bruchverhalten von kugelförmigen Granulaten bei Druck- und Stoßbeanspruchung (2006)

    Google Scholar 

  25. Zou, F., Fang, Z., Xia, M.: Study on dynamic mechanical properties of limestone under uniaxial impact compressive loads. Math. Probl. Eng. 2016, 1–11 (2016)

    Google Scholar 

  26. Chang, S.H., Yun, K.J., Lee, C.I.: Modeling of fracture and damage in rock by the bonded-particle model. Geosyst. Eng. 5, 113–120 (2002)

    Article  CAS  Google Scholar 

  27. Meerkamm, H.: Technisches Taschenbuch. Schaeffler Technologies GmbH & Co. KG (2013)

    Google Scholar 

  28. Bauder, A., Müller, F., Polke, R.: Investigations concerning the separation mechanism in deflector wheel classifiers. Int. J. Miner. Process. 74, 147–154 (2004)

    Article  Google Scholar 

  29. Smigerski, H.-J.: GVC-Dezembertagung 1993 ‘Feinmahl- und Kiassiertechnik’. In: VDI-Gesellschaft Verfahrenstechnik (1993)

    Google Scholar 

  30. Bauer, U.: Zur trennscharfen Feinstsichtung in Fliehkraft-Abweiseradsichtern. Technische Universität Clausthal (2002)

    Google Scholar 

  31. Galk, J.: Feinsttrennung in Abweiseradsichtern. Technische Universität Clausthal (1995)

    Google Scholar 

  32. Spötter, C., Legenhausen, K., Weber, A.P.: Separation characteristics of a deflection wheel classifier in stationary conditions and at high loadings: new insights by flow visualization. KONA Powder Part. 34, 1–14 (2017)

    Article  Google Scholar 

  33. Hinds, W.C.: Aerosol Technology. Wiley, Hoboken (1999). ISBN 0-471-19410-7

    Google Scholar 

  34. Ren, W., Liu, J., Yu, Y.: Design of a rotor cage with non-radial arc blades for turbo air classifiers. Powder Technol. 292, 46–53 (2016)

    Article  CAS  Google Scholar 

  35. Xing, W., et al.: Experimental study on velocity field between two adjacent blades and gas-solid separation of a turbo air classifier. Powder Technol. 286, 240–245 (2015)

    Article  CAS  Google Scholar 

  36. Leschonski, K.: Windsichter, verfahrenstechnische Maschinen zur Herstellung definierter pulverförmiger Produkte. Jahrb. 1988 der Braunschw. Wissenschaftlichen Gesellschaft, 175–196 (1988)

    Google Scholar 

  37. Barimani, M., Green, S., Rogak, S.: Particulate concentration distribution in centrifugal air classifiers. Miner. Eng. 126, 44–51 (2018)

    Article  CAS  Google Scholar 

  38. Sun, Z., Sun, G., Liu, J., Yang, X.: CFD simulation and optimization of the flow field in horizontal turbo air classifiers. Adv. Powder Technol. 28, 1474–1485 (2017)

    Article  CAS  Google Scholar 

  39. Toneva, P., Epple, P., Breuer, M., Peukert, W., Wirth, K.E.: Grinding in an air classifier mill. Part I: characterisation of the one-phase flow. Powder Technol. 211, 19–27 (2011)

    Article  CAS  Google Scholar 

  40. Schulz, H.: Die Pumpen. Springer, Berlin (1967)

    Google Scholar 

  41. Tropea, C., Yarin, A.L., Foss, J.F.: Springer Handbook of Experimental Fluid Mechanics. Springer, Berlin (2007). ISBN 9783540251415

    Google Scholar 

  42. Stieß, M.: Mechanische Verfahrenstechnik 2. Springer, Berlin (1997). ISBN 978-3-540-55852-1

    Google Scholar 

  43. Hennig, M., Teipel, U.: Modellierung der Trenncharakteristik für den Siebklassierprozess. In: Produktgestaltung in der Partikeltechnologie, pp. 517–534. Fraunhofer Verlag (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weers, M., Wollmann, A., Teipel, U., Weber, A.P. (2020). Dynamics of Separation Characteristics of Sieving and Flow Classification Processes. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_10

Download citation

Publish with us

Policies and ethics