Skip to main content

The Effect of Preliminary Laser Surface Treatment on the Mechanical Properties of a Solid-Phase Compound of an Iron-Nickel Alloy in Diffusion Welding

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Materials ((SPM,volume 6))

Abstract

Laser micro- and nanostructuring is used in various fields of science and technology, because it can improve different surface properties. The chapter considers a method of direct laser micro- and nanostructuring of metallic surfaces and an effect of such preliminary laser surface treatment on the mechanical properties of solid-phase joints made by diffusion welding. For laser treatment it is proposed to use scanning beam of Nd:YAG laser with a wavelength of 355 nm. Analysis of surface topography of samples treated by nanosecond laser was performed by optical profilometer. After the diffusion welding tensile tests were performed on conjunction samples cut out from welded workpieces. These tests showed that preliminary laser processing of the surface of samples made of nickel alloy leads to an improvement in the mechanical properties of the conjunction obtained by diffusion welding. It leads to an increase in the tensile strength up to 29% and tensile strain up to 20%. The pulse energy density at laser surface treatment significantly affects the properties of welded joint. Also the preliminary laser treatment of surfaces allows one to reduce the temperature of diffusion welding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.A. Quintana, E. Song, G.T. Wang, J.A. Martinez, Chem. Eng. Process Technol. 1, 1008 (2013)

    Google Scholar 

  2. C.-T. Hsieh, J.-M. Chen, H.-H. Lin, H.-C. Shih, Appl. Phys. Lett. 83, 3383 (2003)

    Article  CAS  Google Scholar 

  3. V.Yu. Fominskii, S.N. Grigor’ev, R.I. Romanov, V.N. Nevolin. Tech. Phys. 57(4), 516 (2012)

    Google Scholar 

  4. C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, Appl. Phys. Lett. 84(11), 1850 (2004)

    Article  CAS  Google Scholar 

  5. M.C. Ferrara, L. Pilloni, S. Mazzarelli, L. Tapfer, J. Phys. D Appl. Phys. 43, 095301 (2010)

    Article  Google Scholar 

  6. V.N. Elkin, V.P. Gordo, V.V. Melukov, Bull. PNRPU Mech. Eng. Mater. Sci. 183(7), 673 (2013) (in Russian)

    Google Scholar 

  7. Yu.A. Vashukov, S.F. Demichev, V.D. Elenev, T.V. Malinskiy, S.I. Mikolutskiy, Yu.V. Khomich, V.A. Yamshchikov, Appl. Phys. 1, 82 (2019) (in Russian)

    Google Scholar 

  8. N.F. Kazakov, Diffusion Welding of Materials (Mashinostroenie, Moscow, 1976), 312 p (in Russian)

    Google Scholar 

  9. S.I. Mikolutskiy, R.R. Khasaya, Yu.V. Khomich, V.A. Yamshchikov, J. Phys: Conf. Ser. 987, 012007 (2018)

    Google Scholar 

  10. S.I. Mikolutskiy, R.R. Khasaya, Yu.V. Khomich, in Proceedings of the 14th Sino-Russia Symposium on Advanced Materials and Technologies, November 2017 (Metallurgical Industry Press, Beijing, 2017), p. 319

    Google Scholar 

  11. V.Yu. Khomich, V.A. Shmakov, Physics Uspekhi 58, 455 (2015)

    Article  CAS  Google Scholar 

  12. D.V. Ganin, S.I. Mikolutskiy, V.N. Tokarev, V.Yu. Khomich, V.A. Shmakov, V.A. Yamshchikov, Quantum Electron. 44(4), 317 (2014)

    Google Scholar 

  13. S.I. Mikolutskiy, V.Yu. Khomich, V.A. Shmakov, V.A. Yamshchikov, Nanotechnol. Russ. 6(11–12), 733 (2011)

    Article  Google Scholar 

  14. V.N. Tokarev, V.Yu. Khomich, V.A. Shmakov, V.A. Yamshchikov, Phys. Chem. Mater. Treat. 4, 18 (2008) (in Russian)

    Google Scholar 

  15. M.Kh. Mukhametrakhimov, Lett. Mater. 3, 276 (2013) (in Russian)

    Article  Google Scholar 

  16. R.G. Khazgaliev, M.F. Imayev, R.R. Mulyukov, F.F. Safin. Lett. Mater. 5(2), 133 (2015) (in Russian)

    Google Scholar 

  17. M.W. Mahoney, Superplastic properties of alloy 718, in Superalloy 718—Metallurgy and Applications, ed. by E.A. Loria (The Minerals, Metals & Materials Society, 1989), p. 391

    Google Scholar 

  18. R.Ya. Lutfullin, O.A. Kaibyshev, O.R. Valiakhmetov, M.Kh. Mukhametrakhimov, R.V. Safiullin, R.R. Mulyukov, Perspect. Mater. 4, 21 (2003) (in Russian)

    Google Scholar 

Download references

Acknowledgements

This research was performed with the support of Presidium of the Russian Academy of Sciences, the Basic Research Program I.7. The authors thank Elkin V. N. and Malinsky T. V. for their assistance in conducting experiments and discussing the results of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Yamshchikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khomich, Y., Yamshchikov, V. (2020). The Effect of Preliminary Laser Surface Treatment on the Mechanical Properties of a Solid-Phase Compound of an Iron-Nickel Alloy in Diffusion Welding. In: Parinov, I., Chang, SH., Long, B. (eds) Advanced Materials. Springer Proceedings in Materials, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-45120-2_6

Download citation

Publish with us

Policies and ethics