Skip to main content

Crystal Structure and Dielectric Properties of Layered Perovskite-Like Solid Solutions Bi3−xLuxTiNbO9 (x = 0, 0.05, 0.1) with High Curie Temperature

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Materials ((SPM,volume 6))

Abstract

The structural and electrophysical characteristics of a number of solid solutions of layered perovskite-like oxides Bi3−xLuxTiNbO9 (x = 0, 0.05, 0.1) have been studied. According to the data of powder X-ray diffraction, all the compounds are single-phase with the structures of two-layer Aurivillius phases) (m = 2) with the orthorhombic crystal lattice (space group A21am). The temperature dependence of the relative permittivity ε/ε0(T) compounds have been measured and showed that the Curie temperature of the perovskite-like oxides Bi3−xLuxTiNbO9 increases with the doping parameter x up to TC = 964 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Aurivillius, Arkiv. Kemi. 1, 463 (1949)

    CAS  Google Scholar 

  2. B. Aurivillius, Arkiv. Kemi. 1, 499 (1949)

    CAS  Google Scholar 

  3. B. Aurivillius, Arkiv. Kemi. 2, 512 (1950)

    Google Scholar 

  4. V.A. Isupov, J. Inorg. Chem. 39, 731 (1994)

    CAS  Google Scholar 

  5. S.V. Zubkov, V.G. Vlasenko, J. Phys. Solid State 59(12), 2325 (2017)

    Article  CAS  Google Scholar 

  6. S.V. Zubkov, V.G. Vlasenko, V.A. Shuvaeva, S.I. Shevtsova, J. Phys. Solid State 58(1), 42 (2016)

    Article  CAS  Google Scholar 

  7. I.A. Zarubin, V.G. Vlasenko, A.T. Shuvaev, Inorg. Mater. 45, 555 (2009)

    Article  CAS  Google Scholar 

  8. V.G. Vlasenko, A.T. Shuvaev, I.A. Zarubin, V.V. Vlasenko, Phys. Solid State 52, 744 (2010)

    Article  CAS  Google Scholar 

  9. Z.G. Gai, M.L. Zhao, W.B. Su, C.L. Wang, J. Liu, J.L. Zhang, J. Electroceram 31, 143 (2013)

    Article  CAS  Google Scholar 

  10. M.A. Bekhtin, A.A. Bush, K.E. Kamentsev, A.G. Segalla, Inorg. Mater. 52, 557 (2016)

    Article  Google Scholar 

  11. Z. Zhang, H. Yan, X. Dong, Y. Wang, Mater. Res. Bull. 38, 241 (2003)

    Article  Google Scholar 

  12. A. Ando, M. Kimura, Y. Sakabe, Jpn. J. Appl. Phys. 42, 520 (2003)

    Article  CAS  Google Scholar 

  13. R.Z. Hou, X.M. Chen, J. Mater. Res. 20, 2354 (2005)

    Article  CAS  Google Scholar 

  14. R.Z. Hou, X.M. Chen, Solid State Commun. 130, 469 (2004)

    Article  CAS  Google Scholar 

  15. Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, Jpn. J. Appl. Phys. 39, 1259 (2000)

    Article  Google Scholar 

  16. Y. Yao, C. Song, P. Bao, D. Su, D.X. Lu, J. Appl. Phys. 95, 3126 (2004)

    Article  CAS  Google Scholar 

  17. R.W. Wolfe, R.E. Newnham, D.K. Smith, Ferroelectrics 3, 11971 (2004)

    Google Scholar 

  18. A. Moure, L. Pardo, C. Alemany, J. Eur. Ceram. 21, 1399 (2001)

    Article  CAS  Google Scholar 

  19. V.G. Vlasenko, S.V. Zubkov, V.A. Shuvaeva, Phys. Solid State 57, 900 (2015)

    Article  CAS  Google Scholar 

  20. Z.Y. Zhou, X.L. Dong, H. Chen, H.X. Yan, J. Am. Ceram. Soc. 89, 1756 (2006)

    Article  CAS  Google Scholar 

  21. S.V. Zubkov, V.G. Vlasenko, V.A. Shuvaeva, S.I. Shevtsova, Phys. Solid State 58, 42 (2016)

    Article  CAS  Google Scholar 

  22. Z.X. Cheng, X.L. Wang, Appl. Phys. Lett. 90, 222902 (2007)

    Article  Google Scholar 

  23. R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki, Mater. Res. Bull. 38, 25 (2003)

    Article  CAS  Google Scholar 

  24. H.X. Yan, C.G. Li, J.G. Zhou, Jpn. J. Appl. Phys. 40, 6501 (2001)

    Article  CAS  Google Scholar 

  25. Z.X. Cheng, X.L. Wang, Appl. Phys. Lett. 89, 032901 (2006)

    Article  Google Scholar 

  26. Z.G. Gai, J.F. Wang, Appl. Phys. Lett. 90, 052911 (2007)

    Article  Google Scholar 

  27. S.J. Zhang, Solid State Commun. 140, 154 (2006)

    Article  CAS  Google Scholar 

  28. Z.X. Cheng, X.L. Wang, J. Phys. D 43, 242001 (2010)

    Article  Google Scholar 

  29. M. Matsushita, R. Aoyagi, H. Takeda, Jpn. J. Appl. Phys. 43, 7164 (2004)

    Article  CAS  Google Scholar 

  30. R. Aoyagi, S. Inai, Y. Hiruma, T. Takenaka, Jpn. J. Appl. Phys. 44, 7055 (2005)

    Article  CAS  Google Scholar 

  31. Z.X. Cheng, X.L. Wang, J. Appl. Phys. 107, 084105 (2010)

    Article  Google Scholar 

  32. W. Kraus, G. Nolze, Powder Cell for Windows, Version2.3 (Federal Institute for Materials Research and Testing, Berlin (1999)

    Google Scholar 

  33. R.D. Shannon, Acta crystallographica Section A. crystal physics. Diffr. Theor. Gen. Crystallogr. 32, 75 (1976)

    Google Scholar 

  34. V.M. Goldschmidt, Geochemisca Veterlun (NorskeVidenkap, Oslo, 1927)

    Google Scholar 

  35. A. Moure, L. Pardo, J. Appl. Phys. 97, 084103 (2005)

    Article  Google Scholar 

  36. H. Zhang, H. Yan, M.J. Reece, J. Appl. Phys. 108, 014109 (2010)

    Article  Google Scholar 

  37. V.G. Vlasenko, S.V. Zubkov, V.A. Shuvaeva, K.G. Abdulvakhidov, S.I. Shevtsova, Phys. Solid State 56(8), 1554 (2014)

    Article  CAS  Google Scholar 

  38. B. Jiménez, L. Pardo, A. Castro, P. Millán, R. Jiménez, M. Elaatmani, M. Oualla, Ferroelectrics 241, 279 (2000)

    Article  Google Scholar 

  39. D. Kajewski, Z. Ujma, K. Szot, M. Paweczyk, Ceram. Int. 35, 2351 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, Southern Federal University, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zubkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zubkov, S.V., Shevtsova, S.I. (2020). Crystal Structure and Dielectric Properties of Layered Perovskite-Like Solid Solutions Bi3−xLuxTiNbO9 (x = 0, 0.05, 0.1) with High Curie Temperature. In: Parinov, I., Chang, SH., Long, B. (eds) Advanced Materials. Springer Proceedings in Materials, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-45120-2_15

Download citation

Publish with us

Policies and ethics