Skip to main content

Nonlinear Systems for Unconventional Computing

  • Chapter
  • First Online:
Book cover Emerging Frontiers in Nonlinear Science

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 32))

Abstract

The search for new computational machines beyond the traditional von Neumann architecture has given rise to a modern area of nonlinear science—development of unconventional computing—requiring the efforts of mathematicians, physicists and engineers. Many analogue physical systems including nonlinear oscillator networks, lasers, and condensates were proposed and realised to address hard computational problems from various areas of social and physical sciences and technology. The analogue systems emulate spin Hamiltonians with continuous or discrete degrees of freedom to which actual optimisation problems can be mapped. Understanding of the underlying physical process by which the system finds the ground state often leads to new classes of system-inspired or quantum-inspired algorithms for hard optimisation. Together physical platforms and related algorithms can be combined to form a hybrid architecture that may one day compete with conventional computing. In this chapter, we review some of the systems and physically-inspired algorithms that show such promise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, IEEE solid state circuits society newsletter 11, 33 (2006). [Reprinted from Electronics 38, 114 (1965)]

    Article  Google Scholar 

  2. M.M. Waldrop, Nat. News 530, 144 (2016)

    Article  Google Scholar 

  3. G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295(5564), 2427 (2002)

    Article  ADS  Google Scholar 

  4. R. Babbush, P.J. Love, A. Aspuru-Guzik, Sci. Rep. 4, 6603 (2014)

    Article  ADS  Google Scholar 

  5. A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012)

    Article  ADS  Google Scholar 

  6. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum Computation by Adiabatic Evolution, arXiv:quant-ph/0001106

  7. J.J. Hopfield, D.W. Tank, Biol. Cybern. 52, 141 (1985)

    Google Scholar 

  8. G. Wilson, G. Pawley, Biol. Cybern. 58, 63 (1988)

    Article  Google Scholar 

  9. S.V. Aiyer, M. Niranjan, F. Fallside, I.E.E.E. Trans, Neural Netw. 1, 204 (1990)

    Article  Google Scholar 

  10. A. Blum, R.L. Rivest, in Advances in Neural Information Processing Systems, ed. by D.S. Touretzky (Morgan Kaufmann, San Francisco, 1989), p. 494

    Google Scholar 

  11. A. Lucas, Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  12. B. Molnár, F. Molnár, M. Varga, Z. Toroczkai, M. Ercsey-Ravasz, Nat. Commun. 9, 4864 (2018)

    Article  ADS  Google Scholar 

  13. C.J.C. Burges, Microsoft Research Technical Report MSR-TR-2002-83 (2002)

    Google Scholar 

  14. M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, E. Aurell, Phys. Rev. E 87, 012707 (2013)

    Article  ADS  Google Scholar 

  15. M. Sipser, in Stoc’92 – Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing. Victoria, May 1992 (ACM, New York, 1992), p. 603

    Google Scholar 

  16. F. Barahona, J. Phys. A: Math. Gen. 15, 3241 (1982)

    Article  ADS  Google Scholar 

  17. G. de las Cuevas, T.S. Cubitt, Science 351, 1180 (2016)

    Article  ADS  Google Scholar 

  18. R.M. Karp, in Complexity of Computer Computations, ed. by R. Miller (Springer, New York, 1972), p. 85

    Google Scholar 

  19. U. Benlic, J.K. Hao, Eng. Appl. Artif. Intel. 26, 1162 (2013)

    Article  Google Scholar 

  20. K.P. Kalinin, N.G. Berloff, Sci. Repos. 8, 17791 (2018)

    Article  ADS  Google Scholar 

  21. T. Leleu, Y. Yamamoto, P.L. McMahon, K. Aihara, Phys. Rev. Lett. 122, 040607 (2019)

    Article  ADS  Google Scholar 

  22. R.W. Harrison, J. Opt. Soc. Amer. A 10, 1046 (1993)

    Article  ADS  Google Scholar 

  23. O. Bunk, A. Diaz, F. Pfeiffer, C. David, B. Schmitt, D.K. Satapathy, J.F. van der Veen, Acta Crystallogr. A 63, 306 (2007)

    Article  ADS  Google Scholar 

  24. J. Miao, T. Ishikawa, Q. Shen, T. Earnest, Annu. Rev. Phys. Chem. 59, 387 (2008)

    Article  ADS  Google Scholar 

  25. I. Waldspurger, A. d’Aspremont, S. Mallat, Math. Program. 149, 47 (2015)

    Article  MathSciNet  Google Scholar 

  26. F. Hamze, J. Raymond, C.A. Pattison, K. Biswas, H.G. Katzgraber, The Wishart planted ensemble: a tunably-rugged pairwise Ising model with a first-order phase transition, arXiv:1906.00275

  27. M.X. Goemans, D.P. Williamson, J. Comput. Syst. Sci. 68, 442 (2004)

    Article  Google Scholar 

  28. S. Zhang, Y. Huang, SIAM J. Optimiz. 16, 871 (2006)

    Article  Google Scholar 

  29. N. Krislock, J. Malick, F. Roupin, A.C.M.T. Math, Software 43, 32 (2017)

    Google Scholar 

  30. D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005)

    Article  ADS  Google Scholar 

  31. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  32. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Adv. Atom. Mol. Opt. Phys. 42, 95 (2000)

    Article  ADS  Google Scholar 

  33. P. Windpassinger, K. Sengstock, Rep. Prog. Phys. 76, 086401 (2013)

    Article  ADS  Google Scholar 

  34. O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.S. Lühmann, B.A. Malomed, T. Sowiński, J. Zakrzewski, Rep. Prog. Phys. 78, 066001 (2015)

    Article  ADS  Google Scholar 

  35. E.P. Gross, Il Nuovo Cimento 20, 454 (1961)

    Article  ADS  Google Scholar 

  36. L. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    Google Scholar 

  37. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation and Superfluidity (Oxford University Press, Oxford, 2016)

    Book  MATH  Google Scholar 

  38. J.C. Eilbeck, P. Lomdahl, A.C. Scott, Phys. D 16, 318 (1985)

    Article  MathSciNet  Google Scholar 

  39. G.L. Alfimov, P.G. Kevrekidis, V.V. Konotop, M. Salerno, Phys. Rev. E 66, 046608 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001)

    Article  ADS  Google Scholar 

  41. R. Mishmash, L. Carr, Math. Comput. Simul. 80, 732 (2009)

    Article  Google Scholar 

  42. J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, K. Sengstock, Science 333, 996 (2011)

    Article  ADS  Google Scholar 

  43. J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein et al., Nat. Phys. 9, 738 (2013)

    Article  Google Scholar 

  44. M.W. Johnson, M.H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk et al., Nature 473, 194 (2011)

    Article  ADS  Google Scholar 

  45. T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  46. D.S. Steiger, B. Heim, T.F. Rønnow, M. Troyer, Proc. SPIE 9468, 964816 (2015)

    Google Scholar 

  47. V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis, H. Neven, Phys. Rev. X 6, 031015 (2016)

    Google Scholar 

  48. I. Zintchenko, M.B. Hastings, M. Troyer, Phys. Rev. B 91, 024201 (2015)

    Article  ADS  Google Scholar 

  49. H. Cao, R. Chriki, S. Bittner, A.A. Friesem, N. Davidson, Nat. Rev. Phys. 1, 156 (2019)

    Article  Google Scholar 

  50. D. Brunner, M.C. Soriano, C.R. Mirasso, I. Fischer, Nat. Commun. 4, 1364 (2013)

    Article  ADS  Google Scholar 

  51. L. Bao, N.H. Kim, L.J. Mawst, N.N. Elkin, V.N. Troshchieva, D.V. Vysotsky, A.P. Napartovich, Appl. Phys. Lett. 84, 320 (2004)

    Article  ADS  Google Scholar 

  52. V. Eckhouse, M. Fridman, N. Davidson, A.A. Friesem, Phys. Rev. Lett. 100, 024102 (2008)

    Article  ADS  Google Scholar 

  53. M. Nixon, M. Friedman, E. Ronen, A.A. Friesem, N. Davidson, I. Kanter, Phys. Rev. Lett. 106, 223901 (2011)

    Article  ADS  Google Scholar 

  54. F. Rogister, K.S. Thornburg Jr., L. Fabiny, M. Möller, R. Roy, Phys. Rev. Lett. 92, 093905 (2004)

    Article  ADS  Google Scholar 

  55. V. Pal, C. Tradonsky, R. Chriki, A.A. Friesem, N. Davidson, Phys. Rev. Lett. 119, 013902 (2017)

    Article  ADS  Google Scholar 

  56. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    Chapter  MATH  Google Scholar 

  57. Y. Kuramoto, Lect. Notes Phys. 30, 420 (1975)

    Article  ADS  Google Scholar 

  58. H.K. Khalil, Nonlinear Systems (Prentice-Hall, Upper Saddle River, 2002)

    Google Scholar 

  59. C. Tradonsky, O. Raz, V. Pal, R. Chriki, A.A. Friesem, N. Davidson, Sci. Adv. 5, eaax4530 (2019)

    Article  ADS  Google Scholar 

  60. P.L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara et al., Science 354, 614 (2016)

    Article  ADS  Google Scholar 

  61. R. Hamerly, T. Inagaki, P.L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Langrock, K. Inaba, T. Honjo, et al., Sci. Adv. 5, eaau0823 (2019)

    Article  ADS  Google Scholar 

  62. F. Böhm, T. Inagaki, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, H. Takesue, Nat. Commun. 9, 5020 (2018)

    Google Scholar 

  63. Y. Haribara, H. Ishikawa, S. Utsunomiya, K. Aihara, Y. Yamamoto, Quantum Sci. Technol. 2, 044002 (2017)

    Article  ADS  Google Scholar 

  64. A.D. King, W. Bernoudy, J. King, A.J. Berkley, T. Lanting, Emulating the coherent Ising machine with a mean-field algorithm, arXiv:1806.08422

  65. K. Takata, A. Marandi, Y. Yamamoto, Phys. Rev. A 92, 043821 (2015)

    Article  ADS  Google Scholar 

  66. F. Böhm, G. Verschaffelt, G. van der Sande, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  67. M. Babaeian, D.T. Nguyen, V. Demir, M. Akbulut, P.A. Blanche, Y. Kaneda, S. Guha, M.A. Neifeld, N. Peyghambarian, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  68. K.P. Kalinin, N.G. Berloff, New J. Phys. 20, 113023 (2018)

    Article  ADS  Google Scholar 

  69. D. Pierangeli, G. Marcucci, C. Conti, Phys. Rev. Lett. 122, 213902 (2019)

    Article  ADS  Google Scholar 

  70. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. Szymańska, R. André, J. Staehli et al., Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  71. N. Berloff, J. Keeling, in Physics of Quantum Fluids, ed. by A. Bramati, M. Modugno (Springer, Berlin, 2013), p. 19

    Google Scholar 

  72. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  73. J. Klaers, F. Vewinger, M. Weitz, Nat. Phys. 6, 512 (2010)

    Article  Google Scholar 

  74. J. Klaers, J. Schmitt, T. Damm, F. Vewinger, M. Weitz, Appl. Phys. B 105, 17 (2011)

    Article  ADS  Google Scholar 

  75. J. Schmitt, T. Damm, F. Vewinger, M. Weitz, J. Klaers, New J. Phys. 14, 075019 (2012)

    Article  ADS  Google Scholar 

  76. H. Walther, B.T. Varcoe, B.G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  77. E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A.V. Kavokin, P. Senellart et al., Nat. Phys. 6, 860 (2010)

    Article  Google Scholar 

  78. F. Manni, K.G. Lagoudakis, T.C.H. Liew, R. André, B. Deveaud-Plédran, Phys. Rev. Lett. 107, 106401 (2011)

    Article  ADS  Google Scholar 

  79. G. Tosi, G. Christmann, N. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. Savvidis, J. Baumberg, Nat. Phys. 8, 190 (2012)

    Article  Google Scholar 

  80. G. Tosi, G. Christmann, N. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. Savvidis, J. Baumberg, Nat. Commun. 3, 1243 (2012)

    Article  ADS  Google Scholar 

  81. N.G. Berloff, M. Silva, K. Kalinin, A. Askitopoulos, J.D. Töpfer, P. Cilibrizzi, W. Langbein, P.G. Lagoudakis, Nat. Mat. 16, 1120 (2017)

    Article  Google Scholar 

  82. C. Schneider, K. Winkler, M. Fraser, M. Kamp, Y. Yamamoto, E. Ostrovskaya, S. Höfling, Rep. Prog. Phys. 80, 016503 (2016)

    Article  ADS  Google Scholar 

  83. A. Amo, J. Bloch, C.R. Phys. 17, 934 (2016)

    Google Scholar 

  84. D. Dung, C. Kurtscheid, T. Damm, J. Schmitt, F. Vewinger, M. Weitz, J. Klaers, Nat. Photonics 11, 565 (2017)

    Article  Google Scholar 

  85. K.P. Kalinin, N.G. Berloff, Phys. Rev. B 100, 245306 (2019)

    Article  ADS  Google Scholar 

  86. K.P. Kalinin, N.G. Berloff, Phys. Rev. Lett. 121, 235302 (2018)

    Article  ADS  Google Scholar 

  87. N. Stroev, N.G. Berloff, Discrete polynomial optimization with coherent networks of condensates and complex coupling switching, arXiv:1910.00842

  88. R. Lang, K. Kobayashi, IEEE J. Quantum Elect. 16, 347 (1980)

    Article  ADS  Google Scholar 

  89. J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  90. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan Book, Washington D.C., 1962)

    Google Scholar 

  91. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323, 533 (1986)

    Article  ADS  Google Scholar 

  92. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., Int. J. Comput. Vision 115, 211 (2015)

    Article  MathSciNet  Google Scholar 

  93. H.T. Siegelmann, E.D. Sontag, Appl. Math. Lett. 4, 77 (1991)

    Article  MathSciNet  Google Scholar 

  94. S. Hochreiter, J. Schmidhuber, Neural Comput. 9, 1735 (1997)

    Article  Google Scholar 

  95. M. Schuster, K.K. Paliwal, IEEE T. Signal Proces. 45, 2673 (1997)

    Article  ADS  Google Scholar 

  96. H. Zhang, Z. Wang, D. Liu, I.E.E.E.T. Neural Netw. Lear. 25, 1229 (2014)

    Google Scholar 

  97. Z.C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent neural networks for sequence learning, arXiv:1506.00019

  98. P.J. Werbos, Proc. IEEE 78, 1550 (1990)

    Article  Google Scholar 

  99. A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber, IEEE T. Pattern Anal. 31, 855 (2008)

    Article  Google Scholar 

  100. A. Graves, Generating sequences with recurrent neural networks, arXiv:1308.0850

  101. I. Sutskever, J. Martens, G.E. Hinton, in ICML’11 – Proceedings of the 28th International Conference on Machine Learning, ed. by L. Getoor, T. Scheffer. Bellevue, Washington, June 28—July 2, 2011 (Omnipress, Madison, 2011), p. 1017–1024

    Google Scholar 

  102. N. Kalchbrenner, P. Blunsom, in EMNLP’13 – Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, ed. by D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu, S. Bethard. Seattle, October 2013 (Association for Computational Linguistics, Stroudsburg, 2013), p. 1700

    Google Scholar 

  103. I. Sutskever, O. Vinyals, Q.V. Le, in Advances in Neural Information Processing Systems 27, ed. by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger. Conference on Neural Information Processing Systems 2014, Montreal, December 2014 (Curran Associates, New York, 2014), p. 3104

    Google Scholar 

  104. T.W. Hughes, I.A. Williamson, M. Minkov, S. Fan, Sci. Adv. 5, eaay6946 (2019)

    Article  ADS  Google Scholar 

  105. H. Jaeger, GMD Report 148, German National Research Center for Information Technology (2001)

    Google Scholar 

  106. W. Maass, T. Natschläger, H. Markram, Neural Comput. 14, 2531 (2002)

    Article  Google Scholar 

  107. M.C. Soriano, S. Ortín, L. Keuninckx, L. Appeltant, J. Danckaert, L. Pesquera, G. Van der Sande, I.E.E.E.T. Neural Netw. Lear. 26, 388 (2014)

    Google Scholar 

  108. P. Antonik, Application of FPGA to Real-Time Machine Learning: Hardware Reservoir Computers and Software Image Processing (Springer, Cham, 2018)

    Book  Google Scholar 

  109. A. Polepalli, N. Soures, D. Kudithipudi, in 2016 IEEE International Conference on Rebooting Computing (ICRC). San Diego, October 2016 (IEEE, 2016) https://doi.org/10.1109/ICRC.2016.7738687

  110. A. Katumba, J. Heyvaert, B. Schneider, S. Uvin, J. Dambre, P. Bienstman, Sci. Rep. 8, 2653 (2018)

    Article  ADS  Google Scholar 

  111. L. Larger, A. Baylón-Fuentes, R. Martinenghi, V.S. Udaltsov, Y.K. Chembo, M. Jacquot, Phys. Rev. X 7, 011015 (2017)

    Google Scholar 

  112. J. Torrejon, M. Riou, F.A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima et al., Nature 547, 428 (2017)

    Article  Google Scholar 

  113. R. Nakane, G. Tanaka, A. Hirose, IEEE Access 6, 4462 (2018)

    Article  Google Scholar 

  114. D. Prychynenko, M. Sitte, K. Litzius, B. Krüger, G. Bourianoff, M. Kläui, J. Sinova, K. Everschor-Sitte, Phys. Rev. Appl. 9, 014034 (2018)

    Article  ADS  Google Scholar 

  115. G. Urbain, J. Degrave, B. Carette, J. Dambre, F. Wyffels, Front. Neurorobotics 11, 16 (2017)

    Article  Google Scholar 

  116. P. Vincent-Lamarre, G. Lajoie, J.P. Thivierge, J. Comput. Neurosci. 41, 305 (2016)

    Article  MathSciNet  Google Scholar 

  117. G. Tanaka, T. Yamane, J.B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, A. Hirose, Neural Netw. 115, 100 (2019)

    Article  Google Scholar 

  118. A. Opala, S. Ghosh, T.C. Liew, M. Matuszewski, Phys. Rev. Appl. 11, 064029 (2019)

    Article  ADS  Google Scholar 

  119. T. Leleu, Y. Yamamoto, S. Utsunomiya, K. Aihara, Phys. Rev. E 95, 022118 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  120. H. Goto, K. Tatsumura, A.R. Dixon, Sci. Adv. 5, eaav2372 (2019)

    Article  ADS  MATH  Google Scholar 

  121. R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund, Phys. Rev. X 9, 021032 (2019)

    Google Scholar 

  122. M. Prabhu, C. Roques-Carmes, Y. Shen, N. Harris, L. Jing, J. Carolan, R. Hamerly, T. Baehr-Jones, M. Hochberg, V. Čeperić, et al., A recurrent Ising machine in a photonic integrated circuit, arXiv:1909.13877

  123. J. Preskill, Quantum computing and the entanglement frontier. Rapporteur talk at the 25th Solvay Conference on Physics, Brussels, October 2011. arXiv:1203.5813

  124. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G. Brandao, D.A. Buell et al., Nature 574, 505 (2019)

    Article  ADS  Google Scholar 

  125. E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, R. Wisnieff, Leveraging secondary storage to simulate deep 54-qubit sycamore circuits, arXiv:1910.09534

  126. H. Wang, J. Qin, X. Ding, M.C. Chen, S. Chen, X. You, Y.M. He, X. Jiang, Z. Wang, L. You, Z. Wang, C. Schneider, J.J. Renema, S. Höfling, C.Y. Lu, J.W. Pan, Phys. Rev. Lett. 123, 250503 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia G. Berloff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalinin, K.P., Berloff, N.G. (2020). Nonlinear Systems for Unconventional Computing. In: Kevrekidis, P., Cuevas-Maraver, J., Saxena, A. (eds) Emerging Frontiers in Nonlinear Science. Nonlinear Systems and Complexity, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-44992-6_15

Download citation

Publish with us

Policies and ethics