Skip to main content

Electrophysiological Diagnostics in Chiari Malformation

  • Chapter
  • First Online:
  • 806 Accesses

Abstract

Up to 60% of patients with Chiari type 1 malformation harbor a cervical syringomyelia and a centromedullary syndrome with dissociated pain and thermal sensory impairment, followed by segmental weakness, atrophy, upper motor neuron syndrome, and autonomic dysfunctions due to distension of descending pathways. Comprehensive electrophysiological diagnostics with somatosensory evoked potentials (SSEPs), motor evoked potentials (MEPs), and silent periods help distinguishing between incidental hydromyelia and developing syringomyelia and can provide quantitative parameters for surgical indication in Chiari malformation. Intraoperative neurophysiological monitoring (IOM) can prevent neurological deterioration during positioning and due to microsurgical manipulation for surgeons or institutions with less experience in treating this pathology, in complex or re-exploration cases with scarred medullary junctions or cranio-cervical junction instabilities, and determine the extent of suboccipital decompression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Klekamp J. Surgical treatment of Chiari I malformation – analysis of intraoperative findings, complications, and outcome for 371 foramen magnum decompressions. Neurosurgery. 2012;71:365–80; discussion 380.

    Article  PubMed  Google Scholar 

  2. Leis AA, Kofler M, Ross MA. The silent period in pure sensory neuronopathy. Muscle Nerve. 1992;15:1345–8.

    Article  CAS  PubMed  Google Scholar 

  3. Roser F, Ebner FH, Liebsch M, Dietz K, Tatagiba M. A new concept in the electrophysiological evaluation of syringomyelia. J Neurosurg Spine. 2008;8:517–23.

    Article  PubMed  Google Scholar 

  4. Sigal R, Denys A, Halimi P, Shapeero L, Doyon D, Boudghene F. Ventriculus terminalis of the conus medullaris: MR imaging in four patients with congenital dilatation. AJNR Am J Neuroradiol. 1991;12:733–7.

    CAS  PubMed  Google Scholar 

  5. Roser F, Maier G, Ebner FH, Tatagiba M, Naegele T, Klose U. Fractionated anisotropy (FA-) levels derived from diffusion tensor imaging in cervical syringomyelia. Neurosurgery. 2010;67:901–5.

    Article  PubMed  Google Scholar 

  6. Epstein NE, Danto J, Nardi D. Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine (Phila Pa 1976). 1993;18:737–47.

    Article  CAS  Google Scholar 

  7. Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M. Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol. 2003;20:122–8.

    Article  PubMed  Google Scholar 

  8. Anderson RC, Dowling KC, Feldstein NA, Emerson RG. Chiari I malformation: potential role for intraoperative electrophysiologic monitoring. J Clin Neurophysiol. 2003;20:65–72.

    Article  PubMed  Google Scholar 

  9. Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Improvement in brainstem auditory evoked potentials after suboccipital decompression in patients with chiari I malformations. J Neurosurg. 2003;98:459–64.

    Article  PubMed  Google Scholar 

  10. Chen JA, Coutin-Churchman PE, Nuwer MR, Lazareff JA. Suboccipital craniotomy for Chiari I results in evoked potential conduction changes. Surg Neurol Int. 2012;3:165.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zamel K, Galloway G, Kosnik EJ, Raslan M, Adeli A. Intraoperative neurophysiologic monitoring in 80 patients with Chiari I malformation: role of duraplasty. J Clin Neurophysiol. 2009;26:70–5.

    Article  PubMed  Google Scholar 

  12. Gelfan S, Tarlov IM. Interneurones and rigidity of spinal origin. J Physiol. 1959;146:594–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nogues MA, Stalberg E. Electrodiagnostic findings in syringomyelia. Muscle Nerve. 1999;22:1653–9.

    Article  CAS  PubMed  Google Scholar 

  14. Barker A, Jalinous S, Freeston I. Non-invasive magnetic stimulation of the human motor cortex. Lancet. 1985;1:1106–7.

    Article  CAS  PubMed  Google Scholar 

  15. Masur H, Klostermann F, Oberwittler C, Papke K. Somatosensory evoked potentials after magnetic stimulation at different points of the body in normal subjects and in patients with syringomyelia. Funct Neurol. 1996;11:253–9.

    CAS  PubMed  Google Scholar 

  16. Masur H, Oberwittler C. SEPs and CNS magnetic stimulation in syringomyelia. Muscle Nerve. 1993;16:681–2.

    CAS  PubMed  Google Scholar 

  17. Masur H, Oberwittler C, Fahrendorf G, Heyen P, Reuther G, Nedjat S, et al. The relation between functional deficits, motor and sensory conduction times and MRI findings in syringomyelia. Electroencephalogr Clin Neurophysiol. 1992;85:321–30.

    Article  CAS  PubMed  Google Scholar 

  18. Restuccia D, Mauguiere F. The contribution of median nerve SEPs in the functional assessment of the cervical spinal cord in syringomyelia. A study of 24 patients. Brain. 1991;114(Pt 1B):361–79.

    Article  PubMed  Google Scholar 

  19. Jabbari B, Geyer C, Gunderson C, Chu A, Brophy J, McBurney JW, Jonas B. Somatosensory evoked potentials and magnetic resonance imaging in syringomyelia. Electroencephalogr Clin Neurophysiol. 1990;77:277–85.

    Article  CAS  PubMed  Google Scholar 

  20. Morioka T, Kurita-Tashima S, Fujii K, Nakagaki H, Kato M, Fukui M. Somatosensory and spinal evoked potentials in patients with cervical syringomyelia. Neurosurgery. 1992;30:218–22.

    Article  CAS  PubMed  Google Scholar 

  21. Stöhr M, Buettner UW, Riffel B, Koletzki E. Spinal somatosensory evoked potentials in cervical cord lesions. Electroencephalogr Clin Neurophysiol. 1982;54:257–65.

    Article  PubMed  Google Scholar 

  22. Urasaki E, Wada S, Kadoya C, Matsuzaki H, Yokota A, Matsuoka S. Absence of spinal N13-P13 and normal scalp far-field P14 in a patient with syringomyelia. Electroencephalogr Clin Neurophysiol. 1988;71:400–4.

    Article  CAS  PubMed  Google Scholar 

  23. Veilleux M, Stevens JC. Syringomyelia: electrophysiologic aspects. Muscle Nerve. 1987;10:449–58.

    Article  CAS  PubMed  Google Scholar 

  24. Noel P, Desmedt JE. Somatosensory cerebral evoked potentials after vascular lesions of the brain-stem and diencephalon. Brain. 1975;98:113–28.

    Article  CAS  PubMed  Google Scholar 

  25. Schieppati M, Ducati A. Effects of stimulus intensity, cervical cord tractotomies and cerebellectomy on somatosensory evoked potentials from skin and muscle afferents of cat hind limb. Electroencephalogr Clin Neurophysiol. 1981;51:363–72.

    Article  CAS  PubMed  Google Scholar 

  26. Iragui VJ. The cervical somatosensory evoked potential in man: far-field, conducted and segmental components. Electroencephalogr Clin Neurophysiol. 1984;57:228–35.

    Article  CAS  PubMed  Google Scholar 

  27. Jeanmonod D, Sindou M, Mauguiere F. Intra-operative spinal cord evoked potentials during cervical and lumbo-sacral microsurgical DREZ-tomy (MDT) for chronic pain and spasticity (preliminary data). Acta Neurochir Suppl (Wien). 1989;46:58–61.

    Article  CAS  Google Scholar 

  28. Kofler M, Kronenberg MF, Brenneis C, Felber A, Saltuari L. Cutaneous silent periods in intramedullary spinal cord lesions. J Neurol Sci. 2003;216:67–79.

    Article  PubMed  Google Scholar 

  29. Forcadas I, Hurtado P, Madoz P, Zarranz JJ. Somatosensory evoked potentials in syringomyelia and the Arnold-Chiari anomaly. Clinical and imaging correlations. Neurologia. 1988;3:172–5.

    CAS  PubMed  Google Scholar 

  30. Elster AD, Chen MY. Chiari I malformations: clinical and radiologic reappraisal. Radiology. 1992;183:347–53.

    Article  CAS  PubMed  Google Scholar 

  31. Hort-Legrand C, Emery E. Evoked motor and sensory potentials in syringomyelia. Neurochirurgie. 1999;45(Suppl 1):95–104.

    PubMed  Google Scholar 

  32. Cristante L, Herrmann HD. Surgical management of intramedullary spinal cord tumors: functional outcome and sources of morbidity. Neurosurgery. 1994;35:69–74; discussion 74–66.

    Article  CAS  PubMed  Google Scholar 

  33. Emery E, Hort-Legrand C, Hurth M, Metral S. Correlations between clinical deficits, motor and sensory evoked potentials and radiologic aspects of MRI in malformative syringomyelia. 27 Cases. Neurophysiol Clin. 1998;28:56–72.

    Article  CAS  PubMed  Google Scholar 

  34. Leis AA. Conduction abnormalities detected by silent period testing. Electroencephalogr Clin Neurophysiol. 1994;93:444–9.

    Article  CAS  PubMed  Google Scholar 

  35. Leis AA. Cutaneous silent period. Muscle Nerve. 1998;21:1243–5.

    Article  CAS  PubMed  Google Scholar 

  36. Uncini A, Kujirai T, Gluck B, Pullman S. Silent period induced by cutaneous stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:344–52.

    Article  CAS  PubMed  Google Scholar 

  37. Floeter MK. Cutaneous silent periods. Muscle Nerve. 2003;28:391–401.

    Article  PubMed  Google Scholar 

  38. Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466:521–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A. Cutaneous silent period in syringomyelia. Muscle Nerve. 1997;20:884–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kaneko K, Kawai S, Taguchi T, Fuchigami Y, Yonemura H, Fujimoto H. Cortical motor neuron excitability during cutaneous silent period. Electroencephalogr Clin Neurophysiol. 1998;109:364–8.

    Article  CAS  PubMed  Google Scholar 

  41. Stetkarova I, Kofler M, Leis AA. Cutaneous and mixed nerve silent periods in syringomyelia. Clin Neurophysiol. 2001;112:78–85.

    Article  CAS  PubMed  Google Scholar 

  42. Alstermark B, Lundberg A, Sasaki S. Integration in descending motor pathways controlling the forelimb in the cat. 10. Inhibitory pathways to forelimb motoneurones via C3-C4 propriospinal neurones. Exp Brain Res. 1984;56:279–92.

    Article  CAS  PubMed  Google Scholar 

  43. Burke D, Gracies JM, Mazavet D, Meunier S, Pierrot-Deseilligny E. Convergence of descending and various peripheral inputs onto common propriospinal-like inputs in man. J Physiol. 1992;449:655–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Noordhout A, Rothwell JC, Day BL, Dressler D, Nakashima K, Thompson PD, Marsden CD. Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J Physiol. 1992;447:535–48.

    Article  Google Scholar 

  45. Fuhr P. Motor evoked potentials. Physiology, indications, safety aspects. Schweiz Rundsch Med Prax. 1992;81:1489–94.

    CAS  PubMed  Google Scholar 

  46. Sindou M, Chávez-Machuca J, Hashish H. Cranio-cervical decompression for Chiari type I-malformation, adding extreme lateral foramen magnum opening and expansile duroplasty with arachnoid preservation. Technique and long-term functional results in 44 consecutive adult cases – comparison with l. Acta Neurochir. 2002;144:1005–19.

    CAS  PubMed  Google Scholar 

  47. Fuhr P, Agostino R, Hallett M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:257–62.

    Article  CAS  PubMed  Google Scholar 

  48. Brasil-Neto JP, Cammarota A, Valls-Sole J, Pascual-Leone A, Hallett M, Cohen LG. Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand. 1995;92:383–6.

    Article  CAS  PubMed  Google Scholar 

  49. Cantello R. Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology. 2002;58:1135; author reply 1135.

    Article  PubMed  Google Scholar 

  50. Roick H, von Giesen HJ, Benecke R. On the origin of the postexcitatory inhibition seen after transcranial magnetic brain stimulation in awake human subjects. Exp Brain Res. 1993;94:489–98.

    Article  CAS  PubMed  Google Scholar 

  51. van Kuijk AA, Pasman JW, Geurts AC, Hendricks HT. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke. J Clin Neurophysiol. 2005;22:10–24.

    Article  PubMed  Google Scholar 

  52. Roser F, Ebner FH, Liebsch M, Tatagiba MS, Naros G. The role of intraoperative neuromonitoring in adults with Chiari I malformation. Clin Neurol Neurosurg. 2016;150:27–32.

    Article  PubMed  Google Scholar 

  53. Sala F, Squintani G, Tramontano V, Coppola A, Gerosa M. Intraoperative neurophysiological monitoring during surgery for Chiari malformations. Neurol Sci. 2011;32(Suppl 3):S317–9.

    Article  PubMed  Google Scholar 

  54. Nuwer MR, Emerson RG, Galloway G, Legatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. J Clin Neurophysiol. 2012;29:101–8.

    Article  PubMed  Google Scholar 

  55. Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Attenuation of somatosensory evoked potentials during positioning in a patient undergoing suboccipital craniectomy for Chiari I malformation with syringomyelia. J Child Neurol. 2001;16:936–9.

    Article  CAS  PubMed  Google Scholar 

  56. Durham SR, Fjeld-Olenec K. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in pediatric patients: a meta-analysis. J Neurosurg Pediatr. 2008;2:42–9.

    Article  PubMed  Google Scholar 

  57. Haroun RI, Guarnieri M, Meadow JJ, Kraut M, Carson BS. Current opinions for the treatment of syringomyelia and chiari malformations: survey of the Pediatric Section of the American Association of Neurological Surgeons. Pediatr Neurosurg. 2000;33:311–7.

    Article  CAS  PubMed  Google Scholar 

  58. Schijman E, Steinbok P. International survey on the management of Chiari I malformation and syringomyelia. Childs Nerv Syst. 2004;20:341–8.

    Article  PubMed  Google Scholar 

  59. Danto J, Milhorat T, Hertzberg H, Bolognese P, Conlon J, Korn A. The neurophysiological intraoperative monitoring of Chiari malformation surgery. Riv Med. 2006;12:51–4.

    Google Scholar 

  60. Deinsberger W, Christophis P, Jödicke A, Heesen M, Böker DK. Somatosensory evoked potential monitoring during positioning of the patient for posterior fossa surgery in the semisitting position. Neurosurgery. 1998;43:36–40; discussion 40–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Roser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roser, F., Liebsch, M., Rigante, L. (2020). Electrophysiological Diagnostics in Chiari Malformation. In: Tubbs, R., Turgut, M., Oakes, W. (eds) The Chiari Malformations. Springer, Cham. https://doi.org/10.1007/978-3-030-44862-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44862-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44861-5

  • Online ISBN: 978-3-030-44862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics