Skip to main content

Chemical Explosive Mode Analysis for Diagnostics of Direct Numerical Simulations

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

Direct numerical simulation (DNS) has become an important tool to predict and understand complex structures and behaviors of turbulent flames over the last two decades, enabled by the rapid growth of supercomputer power and development of more efficient and accurate Navier–Stokes equation solvers [1]. To predict the strongly nonlinear chemical kinetic processes and their interactions with the flow, detailed chemistry is typically employed in DNS while the computational cost is high even after aggressive mechanism reduction [2]. DNS on today’s supercomputer is capable to generate massive datasets, say tens or hundreds of terabytes, even in cleaned forms, such that systematic computational diagnostic tools need to be developed to extract salient information from the massive raw data. Canonical diagnostic methods based on individual scalars, such as temperature or a species concentration and their combinations (e.g., progress variable and mixture fraction) have been widely employed in previous studies. However, the use of such scalars typically requires semi-empirical criteria that need to be adjusted for different flame types and conditions, rendering them difficult to be automated for the processing of large flame data. Tools universally applicable to different flames and suitable for DNS data diagnostics are scarce and need to be developed. To address this need, a method of chemical explosive mode analysis (CEMA) was recently developed to systematically detect critical flame features for general reacting flows, particularly when local ignition, extinction, and premixed flame fronts are involved [3,4,5,6]. CEMA has been demonstrated in elementary reactors, laminar flames and a variety of turbulent flames [3,4,5,6,7,8,9]. It was found that CEMA-based criteria are rather robust and reliable for limit phenomena detection for both premixed and partially premixed flames, and the use of CEMA in computational diagnostics of different types of flames is discussed in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki et al., Comput. Sci. Discov. 2(1), 015001 (2009)

    Article  Google Scholar 

  2. T. Lu, C.K. Law, Prog. Energy Combust. Sci. 35(2), 192 (2009)

    Article  Google Scholar 

  3. T. Lu, C. Yoo, J. Chen, C.K. Law, J. Fluid Mech. 652, 45 (2010)

    Article  Google Scholar 

  4. Z. Luo, C.S. Yoo, E.S. Richardson, J.H. Chen, C.K. Law, T. Lu, Combust. Flame 159(1), 265 (2012)

    Article  Google Scholar 

  5. R. Shan, C.S. Yoo, J.H. Chen, T. Lu, Combust. Flame 159(10), 3119 (2012)

    Article  Google Scholar 

  6. C. Xu, J.W. Park, C.S. Yoo, J.H. Chen, T. Lu, Proc. Combust. Inst. 37(2), 2407 (2019)

    Article  Google Scholar 

  7. M.B. Luong, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 161(11), 2878 (2014)

    Article  Google Scholar 

  8. C.S. Yoo, E.S. Richardson, R. Sankaran, J.H. Chen, Proc. Combust. Inst. 33(1), 1619 (2011)

    Article  Google Scholar 

  9. C.S. Yoo, Z. Luo, T. Lu, H. Kim, J.H. Chen, Proc. Combust. Inst. 34(2), 2985 (2013)

    Article  Google Scholar 

  10. C.K. Law, Combustion Physics (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  11. J.E. Dec, Proc. Combust. Inst. 32(2), 2727 (2009)

    Article  Google Scholar 

  12. M. Yao, Z. Zheng, H. Liu, Prog. Energy Combust. Sci. 35(5), 398 (2009)

    Article  Google Scholar 

  13. J.E. Dec, Encyclopedia of Automotive Engineering (2014), pp. 1–40

    Google Scholar 

  14. M.B. Luong, Z. Luo, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 160(10), 2038 (2013)

    Article  Google Scholar 

  15. C.S. Yoo, T. Lu, J.H. Chen, C.K. Law, Combust. Flame 158(9), 1727 (2011)

    Article  Google Scholar 

  16. S.O. Kim, M.B. Luong, J.H. Chen, C.S. Yoo, Combust. Flame 162(3), 717 (2015)

    Article  Google Scholar 

  17. M.B. Luong, G.H. Yu, T. Lu, S.H. Chung, C.S. Yoo, Combust. Flame 162(12), 4566 (2015)

    Article  Google Scholar 

  18. M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3587 (2017)

    Article  Google Scholar 

  19. M.B. Luong, G.H. Yu, S.H. Chung, C.S. Yoo, Proc. Combust. Inst. 36(3), 3623 (2017)

    Article  Google Scholar 

  20. G.H. Yu, M.B. Luong, S.H. Chung, C.S. Yoo, Combust. Flame 208, 299 (2019)

    Article  Google Scholar 

  21. A. Bhagatwala, J.H. Chen, T. Lu, Combust. Flame 161(7), 1826 (2014)

    Article  Google Scholar 

  22. A. Bhagatwala, R. Sankaran, S. Kokjohn, J.H. Chen, Combust. Flame 162(9), 3412 (2015)

    Article  Google Scholar 

  23. C.A. Kennedy, M.H. Carpenter, R.M. Lewis, Appl. Numer. Math. 35(3), 177 (2000)

    Article  MathSciNet  Google Scholar 

  24. C.A. Kennedy, M.H. Carpenter, Appl. Numer. Math. 14(4), 397 (1994)

    Article  MathSciNet  Google Scholar 

  25. R.J. Kee, F.M. Rupley, E. Meeks, J.A. Miller, Chemkin-iii: a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Technical report (Sandia National Labs., Livermore, 1996)

    Google Scholar 

  26. R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, Sandia National Laboratories Report SAND86-8246 13, 80401 (1986)

    Google Scholar 

  27. T. Lu, C.K. Law, Combust. Flame 148(3), 117 (2007)

    Article  Google Scholar 

  28. T. Lu, C.K. Law, Combust. Flame 154(1–2), 153 (2008)

    Article  Google Scholar 

  29. T. Lu, C.K. Law, C.S. Yoo, J.H. Chen, Combust. Flame 156(8), 1542 (2009)

    Article  Google Scholar 

  30. K.M. Lyons, Prog. Energy Combust. Sci. 33(2), 211 (2007)

    Article  Google Scholar 

  31. C.S. Yoo, R. Sankaran, J. Chen, J. Fluid Mech. 640, 453 (2009)

    Article  Google Scholar 

  32. S. Chung, Proc. Combust. Inst. 31(1), 877 (2007)

    Article  Google Scholar 

  33. S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(9), 3437 (2015)

    Article  Google Scholar 

  34. S. Deng, P. Zhao, M.E. Mueller, C.K. Law, Combust. Flame 162(12), 4471 (2015)

    Article  Google Scholar 

  35. K.S. Jung, S.O. Kim, T. Lu, S.H. Chung, B.J. Lee, C.S. Yoo, Combust. Flame 198, 305 (2018)

    Article  Google Scholar 

  36. R. Grout, A. Gruber, H. Kolla, P.T. Bremer, J. Bennett, A. Gyulassy, J. Chen, J. Fluid Mech. 706, 351 (2012)

    Article  Google Scholar 

  37. H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 159(8), 2755 (2012)

    Article  Google Scholar 

  38. Y. Minamoto, H. Kolla, R.W. Grout, A. Gruber, J.H. Chen, Combust. Flame 162(10), 3569 (2015)

    Article  Google Scholar 

  39. S. Lyra, B. Wilde, H. Kolla, J.M. Seitzman, T.C. Lieuwen, J.H. Chen, Combust. Flame 162(4), 1234 (2015)

    Article  Google Scholar 

  40. K. Aditya, A. Gruber, C. Xu, T. Lu, A. Krisman, M.R. Bothien, J.H. Chen, Proc. Combust. Inst. 37(2), 2635 (2019)

    Article  Google Scholar 

  41. C. Fureby, K. Nordin-Bates, K. Petterson, A. Bresson, V. Sabelnikov, Proc. Combust. Inst. 35(2), 2127 (2015)

    Article  Google Scholar 

  42. I.A. Dodoulas, S. Navarro-Martinez, Combust. Theor. Model. 19(1), 107 (2015)

    Article  Google Scholar 

  43. K. Nordin-Bates, C. Fureby, S. Karl, K. Hannemann, Proc. Combust. Inst. 36(2), 2893 (2017)

    Article  Google Scholar 

  44. L. Cifuentes, E. Fooladgar, C. Duwig, Fuel 232, 712 (2018)

    Article  Google Scholar 

  45. H. Wei, W. Zhao, Z. Lu, L. Zhou, Fuel 241, 786 (2019)

    Article  Google Scholar 

  46. W. Wu, Y. Piao, Q. Xie, Z. Ren, AIAA J. 57(4), 1355 (2019)

    Article  Google Scholar 

  47. J. An, Y. Jiang, M. Ye, R. Qiu, Int. J. Hydrog. Energy 38(18), 7528 (2013)

    Article  Google Scholar 

  48. L. Wang, Y. Jiang, R. Qiu, Energy Fuels 31(9), 9939 (2017)

    Article  Google Scholar 

  49. C. Xu, M.M. Ameen, S. Som, J.H. Chen, Z. Ren, T. Lu, Combust. Flame 195, 30 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfeng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoo, C.S., Lu, T., Chen, J.H. (2020). Chemical Explosive Mode Analysis for Diagnostics of Direct Numerical Simulations. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_5

Download citation

Publish with us

Policies and ethics