Skip to main content

Accelerating a Classic 3D Video Game on Heterogeneous Reconfigurable MPSoCs

  • Conference paper
  • First Online:
  • 1554 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12083))

Abstract

Heterogeneous Reconfigurable MPSoCs, coupling microprocessors with Programmable Logic, are becoming extremely important in High-Performance Embedded Computing domain where energy consumption is a key factor to be considered by every designer. However, efficient hardware/software co-design still requires experience and a big effort: finding an optimal solution and an acceptable trade-off between performance and energy may require several tests and it is strongly platform-dependent. To this respect, a Dataflow-based method is used in this work for exploring different hardware/software configurations (number of hardware accelerators and FPGA frequency). As a use case, the acceleration of a well-known 3D video game (DOOM) is presented. The method offers rapid trade-off analysis in terms of non-functional parameters such as computing performance or power/energy measurements.

Extensive experimental results show that is possible to speed up the game and, at the same time, reduce the energy consumption of the whole platform. A custom Linux-based Operating System for Zynq Ultrascale+ was created, including a GPU driver to support a graphical interface on an HDMI screen and drivers to manage custom hardware accelerators on the FPGA side.

The best solution to save up to 63% of energy corresponds to the use of four parallel hardware accelerators, where a function speed up of x3.6 and an application speed up of x2 (in line with Amdahl’s law) is obtained.

Additionally, a set of Pareto optimal solutions are reported in the results section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://bitbucket.org/d_lima/tfm_doom/.

  2. 2.

    https://bitbucket.org/d_lima/desktop_image_zcu102/.

  3. 3.

    The hack comes from the Xilinx’s documentation: “SDSoC Environment Platform Development Guide UG1146 (v2017.4) January 26, 2018” and was adapted for our purpose. In the document, it is used with Petalinux. However, the use of Petalinux is avoided in this work.

References

  1. Agne, A., et al.: ReconOS: an operating system approach for reconfigurable computing. IEEE Micro 34(1), 60–71 (2014)

    Article  Google Scholar 

  2. Arrestier, F., Desnos, K., Pelcat, M., Heulot, J., Juarez, E., Menard, D.: Delays and states in dataflow models of computation. In: Proceedings of the 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2018, pp. 47–54. ACM, New York (2018). https://doi.org/10.1145/3229631.3229645

  3. Baghdadi, A., Zergainoh, N., Cesario, W., Roudier, T., Jerraya, A.A.: Design space exploration for hardware/software codesign of multiprocessor systems. In: Proceedings 11th International Workshop on Rapid System Prototyping, RSP 2000. Shortening the Path from Specification to Prototype (Cat. No. PR00668), pp. 8–13, June 2000. https://doi.org/10.1109/IWRSP.2000.854975

  4. Beltrame, G., Fossati, L., Sciuto, D.: Decision-theoretic design space exploration of multiprocessor platforms. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(7), 1083–1095 (2010). https://doi.org/10.1109/TCAD.2010.2049053

    Article  Google Scholar 

  5. Blythe, S.A., Walker, R.A.: Efficient optimal design space characterization methodologies. ACM Trans. Des. Autom. Electron. Syst. 5(3), 322–336 (2000). https://doi.org/10.1145/348019.348058

    Article  Google Scholar 

  6. Bruni, D., Bogliolo, A., Benini, L.: Statistical design space exploration for application-specific unit synthesis. In: Proceedings of the 38th Design Automation Conference (IEEE Cat. No. 01CH37232), pp. 641–646, June 2001. https://doi.org/10.1145/378239.379039

  7. Caldas-Calle, L., Jara, J., Huerta, M., Gallegos, P.: QoS evaluation of VPN in a Raspberry Pi devices over wireless network. In: 2017 International Caribbean Conference on Devices, Circuits and Systems (ICCDCS), pp. 125–128, June 2017. https://doi.org/10.1109/ICCDCS.2017.7959718

  8. Castrillon, J., Leupers, R.: Programming Heterogeneous MPSoCs: Tool Flows to Close the Software Productivity Gap. Technical report, Lehrstuhl für Software für Systeme auf Silizium (2013)

    Google Scholar 

  9. Charitopoulos, G., Koidis, I., Papadimitriou, K., Pnevmatikatos, D.: Hardware task scheduling for partially reconfigurable FPGAs. In: Sano, K., Soudris, D., Hübner, M., Diniz, P.C. (eds.) ARC 2015. LNCS, vol. 9040, pp. 487–498. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16214-0_45

    Chapter  Google Scholar 

  10. Open-Source Community: Chocolate doom Wiki-pages (2019). https://www.chocolate-doom.org/wiki/index.php/Chocolate_Doom

  11. Coşar, M., Karasartova, S.: A firewall application on SOHO networks with Raspberry Pi and snort. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 1000–1003, October 2017. https://doi.org/10.1109/UBMK.2017.8093414

  12. Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: PiMM: parameterized and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: 2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), pp. 41–48. IEEE (2013)

    Google Scholar 

  13. Eckert, M., Meyer, D., Haase, J., Klauer, B.: Operating system concepts for reconfigurable computing: review and survey. Int. J. Reconfigurable Comput. 2016, 1–11 (2016)

    Article  Google Scholar 

  14. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE Trans. Evol. Comput. 10(3), 358–374 (2006). https://doi.org/10.1109/TEVC.2005.860766

    Article  Google Scholar 

  15. FANDOM: Doom Wiki (2019). https://doom.fandom.com/wiki/Shareware

  16. Gajski, D.D., Vahid, F., Narayan, S.: SpecSyn: an environment supporting the specify-explore-refine paradigm for hardware/software system design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 6(1), 84–100 (1998). https://doi.org/10.1109/92.661251

    Article  Google Scholar 

  17. Gries, M.: Methods for evaluating and covering the design space during early design development. Integr. VLSI J. 38(2), 131–183 (2004)

    Article  Google Scholar 

  18. Harish Kumar, B.: WSN based automatic irrigation and security system using Raspberry Pi board. In: 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), pp. 1097–1103, September 2017. https://doi.org/10.1109/CTCEEC.2017.8455140

  19. Intel: Stratix 10 GX/SX device overview (2018). https://www.altera.com/en_US/pdfs/literature/hb/stratix-10/s10-overview.pdf

  20. Ismail, A., Shannon, L.: FUSE: front-end user framework for O/S abstraction of hardware accelerators. In: 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 170–177. IEEE (2011)

    Google Scholar 

  21. Kang, E., Jackson, E., Schulte, W.: An approach for effective design space exploration. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 33–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21292-5_3

    Chapter  Google Scholar 

  22. Kang, S., Kumar, R.: Magellan: a search and machine learning-based framework for fast multi-core design space exploration and optimization. In: 2008 Design, Automation and Test in Europe, pp. 1432–1437, March 2008. https://doi.org/10.1109/DATE.2008.4484875

  23. Kreutz, M., Marcon, C.A., Carro, L., Wagner, F., Susin, A.A.: Design space exploration comparing homogeneous and heterogeneous network-on-chip architectures. In: Proceedings of the 18th Annual Symposium on Integrated Circuits and System Design, SBCCI 2005, pp. 190–195. ACM, New York (2005). https://doi.org/10.1145/1081081.1081130

  24. Lahiri, K., Raghunathan, A., Dey, S.: System-level performance analysis for designing on-chip communication architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(6), 768–783 (2001). https://doi.org/10.1109/43.924830

    Article  Google Scholar 

  25. Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for combinatorial optimization problems. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 40, 229–240 (2010)

    Article  Google Scholar 

  26. Madroñal, D., et al.: Automatic instrumentation of dataflow applications using PAPI. In: Proceedings of the 15th ACM International Conference on Computing Frontiers, pp. 232–235. ACM (2018)

    Google Scholar 

  27. Nag, K., Pal, T., Pal, N.R.: ASMiGA: an archive-based steady-state micro genetic algorithm. IEEE Trans. Cybern. 45(1), 40–52 (2015). https://doi.org/10.1109/TCYB.2014.2317693

    Article  Google Scholar 

  28. Orsila, H., Salminen, E., Hämäläinen, T.: Parameterizing simulated annealing for distributing Kahn process networks on multiprocessor SoCs. In: 2009 International Symposium on System-on-Chip, pp. 019–026, November 2009. https://doi.org/10.1109/SOCC.2009.5335683

  29. Park, C., Chung, J., Ha, S.: Extended synchronous dataflow for efficient DSP system prototyping. IEEE, June 1999

    Google Scholar 

  30. Parthornratt, T., Burapanonte, N., Gunjarueg, W.: People identification and counting system using Raspberry Pi (AU-PICC: Raspberry Pi customer counter). In: 2016 International Conference on Electronics, Information, and Communications (ICEIC), pp. 1–5. IEEE (2016)

    Google Scholar 

  31. Pelcat, M., et al.: PREESM: a dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In: 2014 6th European Embedded Design in Education and Research Conference (EDERC), pp. 36–40. IEEE (2014)

    Google Scholar 

  32. Pimentel, A.D.: Exploring exploration: a tutorial introduction to embedded systems design space exploration. IEEE Des. Test 34(1), 77–90 (2017)

    Article  MathSciNet  Google Scholar 

  33. Qadri, M.Y., Qadri, N.N., McDonald-Maier, K.D.: Fuzzy logic based energy and throughput aware design space exploration for MPSoC. Microprocess. Microsyst. 40, 113–123 (2016)

    Article  Google Scholar 

  34. Sekar, C., et al.: Tutorial T7: designing with Xilinx SDSoC. In: 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID), pp. xl–xli. IEEE (2017)

    Google Scholar 

  35. Shani, G.: Task-based decomposition of factored POMDPs. IEEE Trans. Cybern. 44(2), 208–216 (2014). https://doi.org/10.1109/TCYB.2013.2252009

    Article  Google Scholar 

  36. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core systems: survey of current and emerging trends. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–10. IEEE (2013)

    Google Scholar 

  37. Sogi, N.R., Chatterjee, P., Nethra, U., Suma, V.: SMARISA: a Raspberry Pi based smart ring for women safety using IoT. In: 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 451–454, July 2018. https://doi.org/10.1109/ICIRCA.2018.8597424

  38. Suriano, L., et al.: DAMHSE: programming heterogeneous MPSocS with hardware acceleration using dataflow-based design space exploration and automated rapid prototyping. Microprocess. Microsyst. 71, 102882 (2019)

    Article  Google Scholar 

  39. Suriano, L., Madroñal, D., Rodríguez, A., Juárez, E., Sanz, C., de la Torre, E.: A unified hardware/software monitoring method for reconfigurable computing architectures using PAPI. In: 2018 13th International Symposium on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–8. IEEE (2018)

    Google Scholar 

  40. Suriano, L., Rodriguez, A., Desnos, K., Pelcat, M., de la Torre, E.: Analysis of a heterogeneous multi-core, multi-hw-accelerator-based system designed using PREESM and SDSoC. In: 2017 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–7. IEEE (2017)

    Google Scholar 

  41. Theelen, B.D., Geilen, M.C., Basten, T., Voeten, J.P., Gheorghita, S.V., Stuijk, S.: A scenario-aware data flow model for combined long-run average and worst-case performance analysis. In: Fourth ACM and IEEE International Conference on Formal Methods and Models for Co-Design, MEMOCODE 2006. Proceedings, pp. 185–194. IEEE (2006)

    Google Scholar 

  42. Wang, Y., et al.: SPREAD: a streaming-based partially reconfigurable architecture and programming model. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(12), 2179–2192 (2013)

    Article  Google Scholar 

  43. Wolf, W., Jerraya, A.A., Martin, G.: Multiprocessor system-on-chip (MPSoC) technology. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(10), 1701–1713 (2008)

    Article  Google Scholar 

  44. Xilinx: Vivado design suite user guide - high level synthesis (2018)

    Google Scholar 

  45. Xilinx: Zynq UltraScale+ MPSoC design overview (2018). https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0070-zynq-mpsoc-design-overview-hub.html

  46. Xin, B., Chen, J., Zhang, J., Dou, L., Peng, Z.: Efficient decision makings for dynamic weapon-target assignment by virtual permutation and Tabu search heuristics. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(6), 649–662 (2010). https://doi.org/10.1109/TSMCC.2010.2049261

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry (Ministerio de Economía y Competitividad) under projects PLATINO under Grant TEC2012-31145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Suriano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suriano, L., Lima, D., de la Torre, E. (2020). Accelerating a Classic 3D Video Game on Heterogeneous Reconfigurable MPSoCs. In: Rincón, F., Barba, J., So, H., Diniz, P., Caba, J. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science(), vol 12083. Springer, Cham. https://doi.org/10.1007/978-3-030-44534-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44534-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44533-1

  • Online ISBN: 978-3-030-44534-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics