Skip to main content

Cardioneuroablation for Cardioinhibitory Vasovagal Syncope

  • Chapter
  • First Online:
Syncope

Abstract

The autonomic nervous system (ANS) plays a key role in cardiovascular regulation, optimizing cardiac performance to match the metabolic needs of the body. The various elements of the cardiac neuraxis, their physiologic functioning, and pathologic alterations in various cardiac disorders are increasingly being understood and have contributed to an greater interest in identifying neuromodulatory strategies for treating arrhythmic, and in particular reflex syncope, disorders.

The role of the ANS in vasovagal syncope (VVS) is well established, albeit incompletely understood. While a number of strategies (e.g., drugs, pacing, physical maneuvers) have attempted to favorably alter different components of the reflex arc involved in VVS, their therapeutic benefits have been limited. Cardioneuroablation, targeting the epicardial cardiac ganglia components of the intrinsic cardiac nervous system, is a promising new strategy, which to date has principally focused on management of patients with severe forms of cardioinhibitory forms of VVS refractory to medical therapy. Several groups have reported favorable outcomes with significant reductions in recurrence of syncopal episodes. However, current evidence is derived from case reports, case series, and small cohort studies which temper enthusiasm for the positive results reported. Well-designed randomized control studies are required before this potentially exciting therapeutic strategy can be considered for wider application in the clinical management of patients with VVS. In this chapter we review the anatomic basis of the cardiac neural network, and briefly discuss current neuromodulatory efforts in various cardiac disorders before reviewing current evidence for cardioneuroablation in VVS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vracko R, Thorning D, Frederickson RG. Nerve fibers in human myocardial scars. Hum Pathol. 1991;22:138–46.

    Article  CAS  Google Scholar 

  2. Han S, Kobayashi K, Joung B, et al. Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol. 2012;59:954–61.

    Article  Google Scholar 

  3. Ajijola OA, Yagishita D, Reddy NK, et al. Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: neuropeptide and morphologic changes. Heart Rhythm. 2015;12:1027–35.

    Article  Google Scholar 

  4. Rajendran PS, Nakamura K, Ajijola OA, et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol. 2016;594:321–41.

    Article  CAS  Google Scholar 

  5. Ardell JL, Armour JA. Neurocardiology: structure-based function. In: Comprehensive physiology. Atlanta: American Cancer Society; 2016. p. 1635–53. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/cphy.c150046. Accessed 30 Dec 2019.

    Chapter  Google Scholar 

  6. Stavrakis S, Po S. Ganglionated plexi ablation: physiology and clinical applications. Arrhythm Electrophysiol Rev. 2017;6:186–90.

    Article  Google Scholar 

  7. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98.

    Article  CAS  Google Scholar 

  8. Armour JA. Potential clinical relevance of the “little brain” on the mammalian heart. Exp Physiol. 2008;93:165–76.

    Article  CAS  Google Scholar 

  9. Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl). 2005;209:425–38.

    Article  Google Scholar 

  10. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57:299–309.

    Article  CAS  Google Scholar 

  11. Cardinal R, Pagé P, Vermeulen M, Ardell JL, Armour JA. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart. Auton Neurosci Basic Clin. 2009;145:55–62.

    Article  CAS  Google Scholar 

  12. Ardell JL, Randall WC. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Phys. 1986;251:H764–73.

    CAS  Google Scholar 

  13. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.

    Article  CAS  Google Scholar 

  14. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109:120–4.

    Article  Google Scholar 

  15. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2:692–9.

    Article  CAS  Google Scholar 

  16. Yamakawa K, Rajendran PS, Takamiya T, Yagishita D, So EL, Mahajan A, Shivkumar K, Vaseghi M. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects. Am J Physiol Heart Circ Physiol. 2015;309:H1579–90.

    Article  CAS  Google Scholar 

  17. Herring N, Kalla M, Paterson DJ. The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol. 2019;16:707–26.

    Article  Google Scholar 

  18. De Ferrari GM, Dusi V, Spazzolini C, Bos JM, Abrams DJ, Berul CI, Crotti L, Davis AM, Eldar M, Kharlap M, Khoury A, Krahn AD, Leenhardt A, Moir CR, Odero A, Olde Nordkamp L, Paul T, Roses I, Noguer F, Shkolnikova M, Till J, Wilde AA, Ackerman MJ, Schwartz PJ. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation. 2015;131:2185–93.

    Article  Google Scholar 

  19. Schwartz PJ, Priori SG, Cerrone M, Spazzolini C, Odero A, Napolitano C, Bloise R, De Ferrari GM, Klersy C, Moss AJ, Zareba W, Robinson JL, Hall WJ, Brink PA, Toivonen L, Epstein AE, Li C, Hu D. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004;109:1826–33.

    Article  Google Scholar 

  20. Vaseghi M, Barwad P, Malavassi Corrales FJ, Tandri H, Mathuria N, Shah R, Sorg JM, Gima J, Mandal K, Saenz Morales LC, Lokhandwala Y, Shivkumar K. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol. 2017;69:3070–80.

    Article  Google Scholar 

  21. Bourke T, Vaseghi M, Michowitz Y, Sankhla V, Shah M, Swapna N, Boyle NG, Mahajan A, Narasimhan C, Lokhandwala Y, Shivkumar K. Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation. 2010;121:2255–62.

    Article  Google Scholar 

  22. Ying T, Wittwer ED, Suraj K, et al. Effective use of percutaneous stellate ganglion blockade in patients with electrical storm. Circ Arrhythm Electrophysiol. 2019;12:e007118.

    Google Scholar 

  23. Remo BF, Preminger M, Bradfield J, et al. Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm. 2014;11:541–6.

    Article  Google Scholar 

  24. Scherlag BJ, Yamanashi W, Patel U, Lazzara R, Jackman WM. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45:1878–86.

    Article  Google Scholar 

  25. Katritsis DG, Pokushalov E, Romanov A, et al. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J Am Coll Cardiol. 2013;62:2318–25.

    Article  Google Scholar 

  26. Driessen AHG, Berger WR, Krul SPJ, et al. Ganglion plexus ablation in advanced atrial fibrillation: the AFACT study. J Am Coll Cardiol. 2016;68:1155–65.

    Article  Google Scholar 

  27. Stavrakis S, Humphrey MB, Scherlag B, et al. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study. JACC Clin. Electrophysiol. 2017;3:929–38.

    Article  Google Scholar 

  28. Pachon MJC, Pachon MEI, Pachon MJC, et al. Cardioneuroablation—new treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. EP Eur. 2005;7:1–13.

    Google Scholar 

  29. Rivarola EW, Hachul D, Wu T, et al. Targets and end points in cardiac autonomic denervation procedures. Circ Arrhythm Electrophysiol. 2017;10:e004638.

    Article  Google Scholar 

  30. Philippe D, Tom R, Christine C, et al. Unifocal right-sided ablation treatment for neurally mediated syncope and functional sinus node dysfunction under computed tomographic guidance. Circ Arrhythm Electrophysiol. 2018;11:e006604.

    Google Scholar 

  31. Qin M, Zhang Y, Liu X, Jiang W-F, Wu S-H, Po S. Atrial ganglionated plexus modification: a novel approach to treat symptomatic sinus bradycardia. JACC Clin Electrophysiol. 2017;3:950–9.

    Article  Google Scholar 

  32. Pachon MJC, Pachon MEI, Cunha Pachon MZ, Lobo TJ, Pachon MJC, Santillana PTG. Catheter ablation of severe neurally meditated reflex (neurocardiogenic or vasovagal) syncope: cardioneuroablation long-term results. EP Eur. 2011;13:1231–42.

    Google Scholar 

  33. Sun W, Zheng L, Qiao Y, et al. Catheter ablation as a treatment for vasovagal syncope: long-term outcome of endocardial autonomic modification of the left atrium. J Am Heart Assoc. 2016;5:e003471.

    PubMed  PubMed Central  Google Scholar 

  34. Hu F, Zheng L, Liang E, et al. Right anterior ganglionated plexus: the primary target of cardioneuroablation? Heart Rhythm. 2019;16:1545–51.

    Article  Google Scholar 

  35. Aksu T, Guler TE, Mutluer FO, Bozyel S, Golcuk SE, Yalin K. Electroanatomic-mapping-guided cardioneuroablation versus combined approach for vasovagal syncope: a cross-sectional observational study. J Interv Card Electrophysiol Int J Arrhythm Pacing. 2019;54:177–88.

    Article  Google Scholar 

  36. Pachon MJC, Pachon MEI, Santillana PTG, et al. Simplified method for vagal effect evaluation in cardiac ablation and electrophysiological procedures. JACC Clin. Electrophysiol. 2015;1:451–60.

    Article  Google Scholar 

Download references

Acknowledgement

Dr. Benditt was supported in part by a grant from the Dr. Earl E Bakken Family in support of Heart-Brain research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnappa, D., Brignole, M., Benditt, D.G. (2020). Cardioneuroablation for Cardioinhibitory Vasovagal Syncope. In: Brignole, M., Benditt, D. (eds) Syncope. Springer, Cham. https://doi.org/10.1007/978-3-030-44507-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44507-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44506-5

  • Online ISBN: 978-3-030-44507-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics