Skip to main content

Millimeter-Wave Substrates and System-Level Approach in Millimeter-Wave Research and Design

  • Chapter
  • First Online:
Millimeter-Wave Integrated Circuits

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 658))

  • 690 Accesses

Abstract

With device scaling, the number and the density of components that can be placed on chip increase. With every new process generation, more and more active devices can be placed into a small area of the IC chip. The phenomenon that is now known as Moore’s law indicates that the circuit density roughly doubles every 18 or 24 months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Packaging, in the microelectronics context, refers to an enclosure placed around electronic circuits to protect them from the influence of the environment (e.g. pressure, impact and moisture). Because packaging cannot be avoided, one cannot escape the fact that it directly influences circuit performance.

  2. 2.

    FR used to stand for “fire-resistant”. Nowadays, FR4 is used without definition.

References

  1. Božanić M, Sinha S (2019) Systems-level packaging for millimeter-wave transceivers. Springer International Publishing, Switzerland

    Google Scholar 

  2. Tummala R (2007) System on package: miniaturization of the entire system. McGraw Hill Professional, New York

    Google Scholar 

  3. Greig W (2007) Integrated circuit packaging, assembly and interconnections. Springer Science & Business Media, Berlin

    Google Scholar 

  4. Sturdivant R (2013) Microwave and millimeter-wave electronic packaging. Artech House, Norwood

    Google Scholar 

  5. Joseph T, Sebastian MT (2010) Microwave dielectric properties of (Sr1xAx)2(Zn1xBx)Si2O7 ceramics (A=Ca, Ba and B=Co, Mg, Mn, Ni). J Am Ceram Soc 93:147–154

    Article  Google Scholar 

  6. Liu D, Pfeiffer U, Grzyb J, Gaucher B (2009) Advanced millimeter-wave technologies: antennas, packaging and circuits. Wiley, Hoboken

    Google Scholar 

  7. Kuang K, Sturdivant R (2017) RF and microwave microelectronics packaging II. Springer, Berlin

    Google Scholar 

  8. Robertson I, Somjit N, Chongcheawchamnan M (2016) Microwave and millimetre-wave design for wireless communications. Wiley, Hoboken

    Google Scholar 

  9. RT/Duroid® laminates [Internet] [Cited 2019 June 8]. Available from: https://www.rogerscorp.com/acs/producttypes/6/RT-duroid-Laminates.aspx

  10. RT/Duroid® 6035HTC laminates [Internet] [Cited 2019 June 8]. Available from: https://www.rogerscorp.com/acs/products/38/RT-duroid-6035HTC-Laminates.aspx

  11. Lu D, Wong CP (eds) (2009) Materials for advanced packaging. Springer US, Boston

    Google Scholar 

  12. Synkiewicz B, Kulawik J, Skwarek A, Yashchyshyn Y, Piasecki P (2016) High resolution patterns on LTCC substrates for microwave applications obtained by screen printing and laser ablation. In: 2016 39th international spring seminar on electronics technology (ISSE), pp 17–21

    Google Scholar 

  13. Yuan Y, Zhang SR, Zhou XH, Li EZ (2013) MgTiO3 filled PTFE composites for microwave substrate applications. Mater Chem Phys 141:175–179

    Article  Google Scholar 

  14. Peng G, Wu C-C, Diao C-C, Yang C-F (2018) Investigation of the composites of epoxy and micro-scale BaTi4O9 ceramic powder as the substrate of microwave communication circuit. Microsyst Technol 24:343–349

    Article  Google Scholar 

  15. Li Y, Goyal D (2017) 3D microelectronic packaging: from fundamentals to applications. Springer, Berlin

    Google Scholar 

  16. Rida A, Margomeno A, Lee JS, Schmalenberg P, Nikolaou S, Tentzeris MM (2010) Integrated wideband 2-D and 3-D transitions for millimeter-wave rf front-ends. IEEE Antennas Wirel Propag Lett 9:1080–1083

    Article  Google Scholar 

  17. Maestrojuan I, Palacios I, Ederra I, Gonzalo R (2015) USE of COC substrates for millimeter-wave devices. Microwave Opt Technol Lett 57:371–377

    Article  Google Scholar 

  18. Johansson C, Uhlig S, Tageman O, Alping A, Haglund J, Robertsson M et al (2003) Microwave circuits in multilayer inorganic-organic polymer thin film technology on laminate substrates. IEEE Trans Adv Packag 26:81–89

    Article  Google Scholar 

  19. Sebastian MT, Jantunen H (2010) Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7:415–434

    Google Scholar 

  20. Gupta N, Mishra A (2016) Selection of substrate material for hybrid microwave integrated circuits (HMICs). 1 [Internet] [Cited 2019 June 8]; 62. Available from: https://www.lmaleidykla.lt/ojs/index.php/energetika/article/view/3316

  21. Drishya V, Unnimaya AN, Naveenraj R, Suresh EK, Ratheesh R (2016) Preparation, characterization, and dielectric properties of PP/CaTiO3 composites for microwave substrate applications. Int J Appl Ceram Technol 13:810–815

    Article  Google Scholar 

  22. Namitha LK, Chameswary J, Ananthakumar S, Sebastian MT (2013) Effect of micro- and nano-fillers on the properties of silicone rubber-alumina flexible microwave substrate. Ceram Int 39:7077–7087

    Article  Google Scholar 

  23. Sharifi H, Lahiji RR, Lin H, Ye PD, Katehi LPB, Mohammadi S (2009) Characterization of parylene-N as flexible substrate and passivation layer for microwave and millimeter-wave integrated circuits. IEEE Trans Adv Packag 32:84–92

    Article  Google Scholar 

  24. Cheema HM, Shamim A (2013) The last barrier: on-chip antennas. IEEE Microwave Mag 14:79–91

    Article  Google Scholar 

  25. Wang H, Lin K, Tsai Z, Lu L, Lu H, Wang C et al (2009) MMICs in the millimeter-wave regime. IEEE Microwave Mag 10:99–117

    Article  Google Scholar 

  26. Goettel B, Winkler W, Bhutani A, Boes F, Pauli M, Zwick T (2018) Packaging solution for a millimeter-wave system-on-chip radar. IEEE Trans Compon Packag Manuf Technol 8:73–81

    Article  Google Scholar 

  27. Watson J, Castro G (2015) A review of high-temperature electronics technology and applications. J Mater Sci Mater Electron 26:9226–9235

    Article  Google Scholar 

  28. Heinrich W (2005) The flip-chip approach for millimeter wave packaging. IEEE Microwave Mag 6:36–45

    Article  Google Scholar 

  29. Han F, Lu K, Horng T, Lin J, Cheng H, Chiu C et al (2009) Packaging effects on the sure of merit of a CMOS cascode low-noise amplifier: flip-chip versus wire-bond. In: 2009 IEEE MTT-S international microwave symposium digest, pp 601–604

    Google Scholar 

  30. Wojnowski M, Issakov V, Knoblinger G, Pressel K, Sommer G, Weigel R (2012) High-$Q$ inductors embedded in the fan-out area of an eWLB. IEEE Trans Compon Packag Manuf Technol 2:1280–1292

    Article  Google Scholar 

  31. Seler E, Wojnowski M, Hartner W, Böck J, Lachner R, Weigel R et al (2014) 3D rectangular waveguide integrated in embedded wafer level ball grid array (eWLB) package. In: 2014 IEEE 64th electronic components and technology conference (ECTC), pp 956–962

    Google Scholar 

  32. Saleh R, Wilton S, Mirabbasi S, Hu A, Greenstreet M, Lemieux G et al (2006) System-on-chip: reuse and integration. Proc IEEE 94:1050–1069

    Article  Google Scholar 

  33. Mellet DS, du Plessis M (2014) A novel CMOS hall effect sensor. Sens Actuators A 211:60–66

    Article  Google Scholar 

  34. ProxFusion. Azoteq [Internet] [Cited 2019 June 11]. Available from: https://www.azoteq.com/products/proxfusion/

  35. Zhang J, Goussetis G, Richard L, Huang G, Fusco V, Dielacher F (2014) Low noise amplifier with integrated balanced antenna for 60 GHz wireless communications. IEEE Trans Antennas Propag 62:3407–3411

    Article  Google Scholar 

  36. Chen J, Henrie M, Mar MF, Nizic M (2012) Mixed-signal methodology guide. Lulu.com

    Google Scholar 

  37. Shi Y, Shang Y, Yu H, Elassaad S (2013) IC-package-system integration design. In: Tong H-M, Lai Y-S, Wong CP (eds): Advanced flip chip packaging. Springer US, Boston, MA

    Google Scholar 

  38. Zhang L, Liu Z, Chen S-W, Wang Y, Long W-M, Guo Y et al (2018) Materials, processing and reliability of low temperature bonding in 3D chip stacking. J Alloy Compd 750:980–995

    Article  Google Scholar 

  39. Lai M-F, Li S-W, Shih J-Y, Chen K-N (2011) Wafer-level three-dimensional integrated circuits (3D IC): schemes and key technologies. Microelectron Eng 88:3282–3286

    Article  Google Scholar 

  40. Wang Q, Chen Z, Jiang J, Guo Z, Mao Z (2017) Dynamic data split: a crosstalk suppression scheme in TSV-based 3D IC. Integration 59:23–30

    Article  Google Scholar 

  41. Lau JH (2010) Design and process of 3D MEMS system-in-package (SiP). J Microelectron Electron Packag 7:10–15

    Article  Google Scholar 

  42. Cheng H-C, Huang T-C, Hwang P-W, Chen W-H (2016) Heat dissipation assessment of through silicon via (TSV)-based 3D IC packaging for CMOS image sensing. Microelectron Reliab 59:84–94

    Article  Google Scholar 

  43. Lau JH (2010) Critical issues of TSV and 3D IC integration. J Microelectron Electron Packag 7:35–43

    Article  Google Scholar 

  44. Lacrevaz T, Bermond C, Bouayadi OE, Houzet G, Artillan P, Lamy Y et al (2014) Electrical broadband characterization method of dielectric molding in 3-D IC and results. IEEE Trans Compon Packag Manuf Technol 4:1515–1522

    Article  Google Scholar 

  45. Lim J, Cho J, Jung DH, Kim JJ, Choi S, Kim D-H et al (2018) Modeling and analysis of TSV noise coupling effects on RF LC-VCO and shielding structures in 3D IC. IEEE Trans Electromagn Compat 60:1939–1947

    Article  Google Scholar 

  46. Adamshick S, Coolbaugh D, Liehr M (2015) Experimental characterization of coaxial through silicon vias for 3D integration. Microelectron J 46:377–382

    Article  Google Scholar 

  47. Mack W (2011) System in package—how to cope with increasing challenges? Electron Device Failure Analysis 14:4–11

    Google Scholar 

  48. Lee YC, Park CS (2016) LTCC-based monolithic system-in-package (SiP) module for millimeter-wave applications. Int J RF Microwave Comput Aided Eng 26:803–811

    Article  Google Scholar 

  49. Santagata F, Dong M, Yuan C, Sokolovskij R, Wei J, Zhang G (2015) 3D system-in-package design using stacked silicon submount technology. Microelectron Int 32:63–72

    Article  Google Scholar 

  50. Raj PM, Sharma H, Sitaraman S, Mishra D, Tummala R (2017) System scaling with nanostructured power and RF components. Proc IEEE 105:2330–2346

    Article  Google Scholar 

  51. Liu Y, Agrawal A, Natarajan A (2016) Millimeter-wave IC-antenna cointegration for integrated transmitters and receivers. IEEE Antennas Wirel Propag Lett 15:1848–1852

    Article  Google Scholar 

  52. Wu P, Liu F, Li J, Chen C, Hou F, Cao L et al (2017) Design and implementation of a rigid-flex RF front-end system-in-package. Microsyst Technol 23:4579–4589

    Article  Google Scholar 

  53. Hagelauer A, Wojnowski M, Pressel K, Weigel R, Kissinger D (2018) Integrated systems-in-package: heterogeneous integration of millimeter-wave active circuits and passives in fan-out wafer-level packaging technologies. IEEE Microwave Mag 19:48–56

    Article  Google Scholar 

  54. Lin Y, Kang C, Chua L, Choi WK, Yoon SW (2016) Advanced 3D eWLB-PoP (Embedded wafer level ball grid array—package on package) technology. In: 2016 IEEE 66th electronic components and technology conference (ECTC), pp 1772–1777

    Google Scholar 

  55. Dai WW (2016) Historical perspective of system in package (SiP). IEEE Circuits Syst Mag 16:50–61

    Article  Google Scholar 

  56. Decrossas E, Glover MD, Porter K, Cannon T, Stegeman T, Allen-McCormack N et al (2015) High-performance and high-data-rate quasi-coaxial LTCC vertical interconnect transitions for multichip modules and system-on-package applications. IEEE Trans Compon Packag Manuf Technol 5:307–313

    Article  Google Scholar 

  57. Lee YC, Kim TW, Ariffin AB, Myoung N-G (2011) 60-GHz amplitude shift-keying receiver LTCC system-on-package module. Microwave Opt Technol Lett 53:758–761

    Article  Google Scholar 

  58. Lee YC, Kong M, Zhang Y (2017) Microelectromechanical systems and packaging. In: Materials for advanced packaging. Springer, Berlin, pp 697–731

    Google Scholar 

  59. Kim MS, Pulugurtha MR, Sundaram V, Tummala RR, Yun H (2018) Ultrathin high-$Q$2-D and 3-D RF inductors in glass packages. IEEE Trans Compon Packag Manuf Technol 8:643–652

    Google Scholar 

  60. Samanta KK, Robertson ID (2011) Advanced multilayer thick-film system-on-package technology for miniaturized and high performance CPW microwave passive components. IEEE Trans Compon Packag Manuf Technol 1:1695–1705

    Article  Google Scholar 

  61. Lim K, Pinel S, Davis M, Sutono A, Lee C-H, Heo D et al (2002) RF-system-on-package (SOP) for wireless communications. IEEE Microwave Mag 3:88–99

    Article  Google Scholar 

  62. Song S, Kim Y, Maeng J, Lee H, Kwon Y, Seo K (2009) A millimeter-wave system-on-package technology using a thin-film substrate with a flip-chip interconnection. IEEE Trans Adv Packag 32:101–108

    Article  Google Scholar 

  63. Pal S, Petrisko D, Bajwa AA, Gupta P, Iyer SS, Kumar R (2018) A case for packageless processors. In: 2018 IEEE international symposium on high performance computer architecture (HPCA), pp 466–479

    Google Scholar 

  64. LaMeres BJ, McIntosh C, Abusultan M (2010) Novel 3-D coaxial interconnect system for use in system-in-package applications. IEEE Trans Adv Packag 33:37–47

    Article  Google Scholar 

  65. Huang S, DeLaCruz J (2017) Improvements of system-in-package integration and electrical performance using BVA wire bonding. IEEE Trans Compon Packag Manuf Technol 7:1020–1034

    Article  Google Scholar 

  66. Hong W (2014) Millimeter-wave antennas and arrays. In: Handbook of antenna technologies, pp 1–53

    Google Scholar 

  67. Mahanfar A, Lee S, Parameswaran AM, Vaughan RG (2010) Self-assembled monopole antennas with arbitrary shapes and tilt angles for system-on-chip and system-in-package applications. IEEE Trans Antennas Propag 58:3020–3028

    Article  Google Scholar 

  68. Zheng L-R, Duo X, Shen M, Michielsen W, Tenhunen H (2004) Cost and performance tradeoff analysis in radio and mixed-signal system-on-package design. IEEE Trans Adv Packag 27:364–375

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Božanić .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Božanić, M., Sinha, S. (2020). Millimeter-Wave Substrates and System-Level Approach in Millimeter-Wave Research and Design. In: Millimeter-Wave Integrated Circuits. Lecture Notes in Electrical Engineering, vol 658. Springer, Cham. https://doi.org/10.1007/978-3-030-44398-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44398-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44397-9

  • Online ISBN: 978-3-030-44398-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics