Skip to main content

Plant Growth-Promoting Rhizobacteria: A Booster for Ameliorating Soil Health and Agriculture Production

  • Chapter
  • First Online:
Soil Health

Part of the book series: Soil Biology ((SOILBIOL,volume 59))

Abstract

Soil is a powerful nonrenewable asset that embraces life on earth by furnishing nutrients to plant. Degradation of soil health due to indiscriminate use of chemical fertilizers and industrialization has become predominant environmental concern with high preeminence. In view of the present scenario, soil microbes are the most important candidates for improving soil fertility and health. The plant growth-promoting microbes are used for enhancing soil fertility under stressed and normal environment. Soil holds variety of microbial species such as fungi, bacteria, mosses and liverwort. The prevalence of microbes is an indicator of soil biological activities and regulates physical and chemical properties of soil. It enhances soil health and crop productivity by diverse mechanisms like biofortification of nutrients, bioremediation of soil, regulation of nutrient cycling, antibiosis, rhizosphere competence, secretion of enzymes, stimulation of systemic resistance in host plant, and production of metabolites, volatile compounds and antifungal toxins against pathogens. Interaction of plant and microorganisms results in plant growth promotion and disease control under fluctuating environment and enables sustainable agriculture without compromising ecosystem balance. Thus, the inclusive use of plant growth-promoting rhizobacteria promotes soil fertility that encourages sustainable agriculture production under extreme condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah Y, Yang M, Zhang M, Masum MM, Ogunyemi SO, Hossain A, An Q, Yan C, Li B (2019) Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett Appl Microbiol 68(5):423–429

    Article  CAS  PubMed  Google Scholar 

  • Abdiev A, Khaitov B, Toderich K, Park KW (2019) Growth, nutrient uptake and yield parameters of chickpea (Cicer arietinum L.) enhance by Rhizobium and Azotobacter inoculations in saline soil. J Plant Nutr 3:1–2

    Google Scholar 

  • Ahmad M, Adil Z, Hussain A, Mumtaz MZ, Nafees M, Ahmad I, Jamil M (2019) Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pak J Agric Sci 56(2):283–289

    Google Scholar 

  • Alloway B (2004) Zinc in soils and crop nutrition. In: Areas of the world with zinc deficiency problems. International Zinc Association, Brussels, pp 1–16

    Google Scholar 

  • Ammari T, Mengel K (2006) Total soluble Fe in soil solutions of chemically different soils. Geoderma 136(3–4):876–885

    Article  CAS  Google Scholar 

  • Anand KU, Kumari BA, Mallick MA (2016) Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. J Pharm Pharm Sci 8:37–40

    CAS  Google Scholar 

  • Azzi V, Kanso A, Kazpard V, Kobeissi A, Lartiges B, El Samrani A (2017) Lactuca sativa growth in compacted and non-compacted semi-arid alkaline soil under phosphate fertilizer treatment and cadmium contamination. Soil Tillage Res 165:1–10

    Article  Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34(5):454–466

    CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317(1–2):235–255

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Goswami MP, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytology 14:26–41

    Article  CAS  Google Scholar 

  • Biswas JK, Banerjee A, Rai M, Naidu R, Biswas B, Vithanage M, Dash MC, Sarkar SK, Meers E (2018) Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma 330:117–124

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  PubMed  Google Scholar 

  • Chenniappan C, Narayanasamy M, Daniel GM, Ramaraj GB, Ponnusamy P, Sekar J, Ramalingam PV (2019) Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol Control 129:55–64

    Article  CAS  Google Scholar 

  • Ciampitti IA, Salvagiotti F (2018) New insights into soybean biological nitrogen fixation. Agron J 110(4):1185–1196

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 201–213

    Chapter  Google Scholar 

  • Damam M, Kaloori K, Gaddam B, Kausar R (2016) Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int J Pharm Sci Rev Res 37(1):130–136

    CAS  Google Scholar 

  • Ditta A, Imtiaz M, Mehmood S, Rizwan MS, Mubeen F, Aziz O, Qian Z, Ijaz R, Tu S (2018) Rock phosphate-enriched organic fertilizer with phosphate-solubilizing microorganisms improves nodulation, growth, and yield of legumes. Commun Soil Sci Plant Anal 49(21):2715–2725

    Article  CAS  Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soil health and sustainable productivity. In: Biological indicators of soil health. CAB International, New York. https://www.ars.usda.gov/research/publications/publication/?seqNo115=78601

  • Dubey RK, Tripathi V, Dubey PK, Singh HB, Abhilash PC (2016) Exploring rhizospheric interactions for agricultural sustainability: the need of integrative research on multi-trophic interactions. J Clean Prod 115:362–365

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Juraeva D, Poberejskaya S, Myachina O, Teryuhova P, Seydalieva L, Aliev A (2004) Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. In: Proceeding of 26th annual conservation tillage conference for sustainable agriculture, Auburn, pp 58–65

    Google Scholar 

  • Etesami H, Alikhani HA, Akbari AA (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6(11):1576–1584

    CAS  Google Scholar 

  • Feng K, Cai Z, Ding T, Yan H, Liu X, Zhang Z (2019) Effects of potassium-solubulizing and photosynthetic bacteria on tolerance to salt stress in maize. J Appl Microbiol 126(5):1530–1540

    Article  CAS  PubMed  Google Scholar 

  • Ferreira CM, Vilas-Boas Â, Sousa CA, Soares HM, Soares EV (2019) Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express 9(1):78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghadam Khani A, Enayatizamir N, Norouzi Masir M (2019) Impact of plant growth promoting rhizobacteria on different forms of soil potassium under wheat cultivation. Lett Appl Microbiol 68(6):514–521

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2015) Biocontrol mechanisms. In: Lugtenberg B (ed) Beneficial plant-bacterial interactions. Springer, Heidelberg, pp 159–188

    Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35(4):1000–1012

    Article  CAS  Google Scholar 

  • Guo Q, Li Y, Lou Y, Shi M, Jiang Y, Zhou J, Sun Y, Xue Q, Lai H (2019) Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease. Appl Soil Ecol 137:154–166

    Article  Google Scholar 

  • He Y, Zhu M, Huang J, Hsiang T, Zheng L (2019) Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaportheoryzae. Can J Plant Pathol 41(1):47–59

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  CAS  PubMed  Google Scholar 

  • Hodge A (2017) Accessibility of inorganic and organic nutrients for mycorrhizas. In: Johnson SC, Gehring C, Jansa J (eds) Mycorrhizal mediation of soil. Elsevier, Amsterdam, pp 129–148

    Chapter  Google Scholar 

  • Holland A (2019) Evaluation of Paenibacillus PGPR strains for growth promotion and biocontrol of rice sheath blight. http://hdl.handle.net/10415/6657

  • Iqbal Hussain M, Naeem Asghar H, Javed Akhtar M, Arshad M (2013) Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil Environ 32(1):71–78

    Google Scholar 

  • Israr D, Mustafa G, Khan KS, Shahzad M, Ahmad N, Masood S (2016) Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiol Biochem 108:304–312

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khan AL, Waqas M, Asaf S, Lee KE, Park YG, Kim AY, Khan MA, You YH, Lee IJ (2019) Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interact 14(1):416–423

    Article  CAS  Google Scholar 

  • Kashyap BK, Solanki MK, Pandey AK, Prabha S, Kumar P, Kumari B (2019) Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In: Ansari R, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 219–236

    Chapter  Google Scholar 

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5(6):588

    Article  CAS  Google Scholar 

  • Khadeejath Rajeela TH, Gupta A, Gopal M, Hegde V, Thomas GV (2018) Evaluation of combinatorial capacity of coconut and cocoa plant growth promoting rhizobacteria (PGPR) with biocontrol agent Trichoderma harzianum. Curr Investig Agric Curr Res 3(4):404–409

    Google Scholar 

  • Khanghahi MY, Pirdashti H, Rahimian H, Nematzadeh GH, Sepanlou MG, Salvatori E, Crecchio C (2019) Leaf photosynthetic characteristics and photosystem II photochemistry of rice (Oryza sativa L.) under potassium-solubilizing bacteria inoculation. Photosynthetica 57(2):500–511

    Article  CAS  Google Scholar 

  • Kinzig A, Socolow RH (1994) Human impacts on the nitrogen cycle. Phys Today 47(11):24–31

    Article  CAS  Google Scholar 

  • Kishore N, Pindi PK, Reddy SR (2015) Phosphate-solubilizing microorganisms: a critical review. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology. Springer, New Delhi, pp 307–333

    Chapter  Google Scholar 

  • Kumar S, Yadav SS (2018) Effect of phosphorus fertilization and bio-organics on growth, yield and nutrient content of mungbean (Vigna radiata (L.) Wilczek). Res J Agric Sci 9(6):1252–1257

    Google Scholar 

  • Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6(2):9

    Article  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016) Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation. J Hazard Mater 317:169–179

    Article  CAS  PubMed  Google Scholar 

  • Lawrance S, Varghese S, Varghese EM, Asok AK (2019) Quinoline derivatives producing Pseudomonas aeruginosa H6 as an efficient bioherbicide for weed management. Biocatal Agric Biotechnol 18:101096

    Article  Google Scholar 

  • Lazcano C, Gómez-Brandón M, Revilla P, Domínguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol Fertil Soils 49(6):723–733

    Article  CAS  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Jiang X, He X, Zhao W, Cao Y, Guo T, Li T, Ni H, Tang X (2019) Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root. J Plant Growth Regul 38(4):1314–1324

    Article  CAS  Google Scholar 

  • López MF, Hegel VA, Torres MJ, García AH, Delgado MJ, López-García SL (2019) The Bradyrhizobium diazoefficiens two-component system NtrYX has a key role in symbiotic nitrogen fixation of soybean plants and cbb 3 oxidase expression in bacteroids. Plant Soil 440(1–2):167–183

    Article  CAS  Google Scholar 

  • Madhukar SM, Raha P, Singh RK (2018) Identification of amino acids and sugars in root exudate of mungbean (Vignaradiata L.). J Pharmacogn Phytochem 7(2):1676–1680

    CAS  Google Scholar 

  • Maldonado-Mendoza IE, Ibarra-Laclette E, Blom J (2018) Genomic analysis of Bacillus sp. strain B25, a biocontrol agent of maize pathogen Fusarium verticillioides. Curr Microbiol 75(3):247–255

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) In: Marschner P (ed) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Martínez OA, Crowley DE, Mora ML, Jorquera MA (2015) Short-term study shows that phytate-mineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants. J Soil Sci Plant Nutr 15(1):153–166

    Google Scholar 

  • Marwa N, Singh N, Srivastava S, Saxena G, Pandey V, Singh N (2019) Characterizing the hypertolerance potential of two indigenous bacterial strains (Bacillus flexus and Acinetobacter junii) and their efficacy in arsenic bioremediation. J Appl Microbiol 126(4):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Mishra PK, Bisht JK, Pattanayak A (2018) Potassium solubilization: strategies to mitigate potassium deficiency in agricultural soils. GJBAHS 7:1–3

    Article  Google Scholar 

  • Morris EK, Morris DJ, Vogt S, Gleber SC, Bigalke M, Wilcke W, Rillig MC (2019) Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J 11:1

    Google Scholar 

  • Mukherjee P, Mitra A, Roy M (2019) Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front Microbiol 10:1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Asad SA, Hafeez F (2018) Bacillus strains as potential alternate for zinc biofortification of maize grains. Int J Agric Biol 20:1779–1786

    CAS  Google Scholar 

  • Nandi M, Selin C, Brawerman G, Fernando WD, de Kievit T (2017) Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control 108:47–54

    Article  CAS  Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Article  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33(11):197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal AK, Mandal S, Sengupta C (2019) Exploitation of IAA producing PGPR on mustard (Brassica nigra L.) seedling growth under cadmium stress condition in comparison with exogenous IAA application. Plant Sci Today 6(1):22–30

    Article  CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Prajakta BM, Suvarna PP, Raghvendra SP, Alok RR (2019) Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35 (R11) of soybean (Glycine max) rhizosphere. SN Appl Sci 1(10):1143

    Article  CAS  Google Scholar 

  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In: PGPR amelioration in sustainable agriculture. Woodhead Publishing, pp 129–157

    Google Scholar 

  • Rani S, Kumar P, Kumar A, Kumar AN, Sewhag M (2016) Effect of biofertilizers on nodulation, nutrient uptake, yield and energy use efficiency of field pea (Pisum sativum L.). J Agrometereol 18(2):330–332

    Google Scholar 

  • Rani A, Singh R, Kumar P, Shukla G (2017) Pros and cons of fungicides: an overview. Int J Eng Sci Res Technol 3:112–117

    Google Scholar 

  • Rathore P (2014) A review on approaches to develop plant growth promoting rhizobacteria. Int J Recent Sci Res 5:403–407

    Google Scholar 

  • Raut AD, Durgude AG, Kadlag AD (2019) Effect of zinc solubilizing bacteria on zinc use efficiency and yield of summer groundnut grown in Entisol. IJCS 7(1):1710–1713

    CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18(1):40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Article  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Sahu M, Adak T, Patil NB, Gowda GB, Yadav MK, Annamalai M, Golive P, Rath PC, Jena M (2019) Dissipation of chlorantraniliprole in contrasting soils and its effect on soil microbes and enzymes. Ecotoxicol Environ Saf 180:288–294

    Article  CAS  PubMed  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8(1):3560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2004) Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz J Microbiol 35(1–2):121–125

    Article  CAS  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Satapute P, Paidi MK, Kurjogi M, Jogaiah S (2019) Physiological adaptation and spectral annotation of arsenic and cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environ Pollut 251:555–563

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94

    Article  CAS  Google Scholar 

  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC (2015) Evaluation of different PGPR strains for yield enhancement and higher Zn content in different genotypes of rice (Oryza sativa L.). J Plant Nutr 38(3):456–472

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219

    Chapter  Google Scholar 

  • Sharma S, Chen C, Navathe S, Chand R, Pandey SP (2019) A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci Rep 9(1):4054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shine MB, Xiao X, Kachroo P, Kachroo A (2018) Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci 279:81–86

    Article  PubMed  CAS  Google Scholar 

  • Shridhar BS (2012) Nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena V, Maurya B, Verma J, Meena R (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185

    Chapter  Google Scholar 

  • Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agr Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol 12(8):386–393

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Natesan SK, Singh BK, Usha K (2005) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 10:36–44

    Google Scholar 

  • Soldatkina MA, Klochko VV, Zagorodnya SD, Rademan S, Visagie MH, Lebelo MT, Gwangwa MV, Joubert AM, Lall N, Reva ON (2018) Promising anticancer activity of batumin: a natural polyene antibiotic produced by Pseudomonas batumici. Future Med Chem 10(18):2187–2199

    Article  CAS  PubMed  Google Scholar 

  • Stephen J, Shabanamol S, Rishad KS, Jisha MS (2015) Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp.(MTCC 8369) under greenhouse conditions. 3 Biotech 5(5):831–837

    Article  PubMed  PubMed Central  Google Scholar 

  • Subhashini DV (2015) Growth promotion and increased potassium uptake of tobacco by potassium-mobilizing bacterium Frateuria aurantia grown at different potassium levels in vertisols. Commun Soil Sci Plant Anayl 46(2):210–220

    Article  CAS  Google Scholar 

  • Takoutsing B, Weber J, Aynekulu E, Martín JA, Shepherd K, Sila A, Tchoundjeu Z, Diby L (2016) Assessment of soil health indicators for sustainable production of maize in smallholder farming systems in the highlands of Cameroon. Geoderma 276:64–73

    Article  CAS  Google Scholar 

  • Teja MR, Kumar KV, Sudini H (2019) Pseudomonas fluorescens Pf7: a potential biocontrol agent against Aspergillus flavus induced aflatoxin contamination in groundnut. Adv Res 24:1–7

    Article  Google Scholar 

  • Teng Z, Shao W, Zhang K, Huo Y, Li M (2019) Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. J Environ Manage 231:189–197

    Article  CAS  PubMed  Google Scholar 

  • Tomer S, Suyal DC, Goel R (2016) Biofertilizers: a timely approach for sustainable agriculture. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 375–395

    Chapter  Google Scholar 

  • Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremed Biodegr 7(3):343

    Google Scholar 

  • Vicente-Hernández A, Salgado-Garciglia R, Valencia-Cantero E, Ramírez-Ordorica A, Hernández-García A, García-Juárez P, Macías-Rodríguez L (2019) Bacillus methylotrophicus M4-96 stimulates the growth of strawberry (Fragaria × ananassa ‘Aromas’) plants in vitro and slows Botrytis cinerea infection by two different methods of interaction. J Plant Growth Regul 38(3):765–777

    Article  CAS  Google Scholar 

  • Wang P, Wang TY, Wu SH, Wen MX, Lu LM, Ke FZ, Wu QS (2019) Effect of arbuscular mycorrhizal fungi on rhizosphere organic acid content and microbial activity of trifoliate orange under different low P conditions. Arch Agron Soil Sci 19:1–4

    Article  Google Scholar 

  • Weidenhamer JD, Montgomery TM, Cipollini DF, Weston PA, Mohney BK (2019) Plant density and rhizosphere chemistry: does marigold root exudate composition respond to intra-and interspecific competition? J Chem Ecol 27:1–9

    Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142(2):731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Wang X, Chen W, Huang Q (2017) Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol J 34(10):873–880

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125(2):627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM (2019) ACC deaminase producing pgpr bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9(7):343

    Article  CAS  Google Scholar 

  • Zaheer A, Malik A, Sher A, Qaisrani MM, Mehmood A, Khan SU, Ashraf M, Mirza Z, Karim S, Rasool M (2019) Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J Biol Sci 26(5):1061–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen P, Ye G, Lin H, Ren D, Guo L, Zhu B, Wang Z (2019) Complete genome sequence of Pseudomonas parafulva PRS09–11288, a biocontrol strain produces the antibiotic phenazine-1-carboxylic acid. Curr Microbiol 76(9):1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhang M, Yang W, Di HJ, Ma L, Liu W, Li B (2019) Effects of microbial inoculants on phosphorus and potassium availability, bacterial community composition, and chili pepper growth in a calcareous soil: a greenhouse study. J Soils Sediments 19(10):3597–3607

    Article  CAS  Google Scholar 

  • Zheng BX, Ding K, Yang XR, Wadaan MA, Hozzein WN, Peñuelas J, Zhu YG (2019) Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Sci Total Environ 647:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147(2):243–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, P., Shankhdhar, D., Shankhdhar, S.C. (2020). Plant Growth-Promoting Rhizobacteria: A Booster for Ameliorating Soil Health and Agriculture Production. In: Giri, B., Varma, A. (eds) Soil Health. Soil Biology, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-44364-1_3

Download citation

Publish with us

Policies and ethics