Skip to main content

Prediction of the Electrical Load for Egyptian Energy Management Systems: Deep Learning Approach

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1153))

Abstract

In the era of the Internet of Things (IoT) and machine learning, energy utilities have now the possibility of providing many benefits to the customers. Using advanced metering infrastructure is an important step to optimize and manage energy consumption. Smart meters are deployed in millions of households worldwide, representing an opportunity for monitoring systems and data analytics. Egypt has started its path into smart metering and needs to use big data analytics to endow the Egyptian grid with intelligence. In this paper, we investigate the role of big data analytics and available machine learning technologies that mine the data to generate insights into smart grid management process. We investigate a deep learning-based methodology such as long short-term memory (LSTM) network model to perform prediction of the electrical load for energy management systems. The LSTM model presents a decrease of 14% in forecasting error compared to deep forward neural networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leskovec, J., Rajaraman, A., Ullman, J.: Mining of Massive Datasets, 2nd edn. Cambridge University Press, Cambridge (2014). ISBN 978-1107015357

    Book  Google Scholar 

  2. Tsai, C.W., Lai, C.F., Chao, H.C., Vasilakos, A.V.: Big data analytics: a survey. J. Big Data 2(21), 1–32 (2015). https://doi.org/10.1186/s40537-015-0030-3

    Article  Google Scholar 

  3. Ministry of Electricity: Egyptian Electricity Holding Company. Annual Report (2017)

    Google Scholar 

  4. Alahakoon, D., Yu, X.: Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans. Ind. Inf. (2015). https://doi.org/10.1109/TII.2015.2414355

    Article  Google Scholar 

  5. Ardakanian, O., Koochakzadeh, N., Singh, R., Golab, L., Keshav, S.: Computing electricity consumption profiles from household smart meter data. In: Proceedings of the EDBT Workshop on Energy Data Management (EnDM), pp. 140–147 (2014)

    Google Scholar 

  6. Birt, B., Newsham, G., Beausoleil-Morrison, I., Armstrong, M., Saldanha, N., Rowlands, I.: Disaggregating categories of electrical energy end-use from whole-house hourly data. Energy Build. 50, 93–102 (2012). https://doi.org/10.1016/j.enbuild.2012.03.025

    Article  Google Scholar 

  7. Downey, P.: Deliver more intelligence to intelligent energy systems. IBM (2017)

    Google Scholar 

  8. Aven, J.: Data Analytics with Spark Using Python. Addison-Wesley, Boston (2019). ISBN 978-0134846019

    Google Scholar 

  9. Gellings, C., Parmenter, K.: Demand-side management. In: Kreith, F., Pepper, D. (eds.) Energy Efficiency and Renewable Energy Handbook, 2nd edn, pp. 399–420. CRC Press, Boca Raton (2015)

    Google Scholar 

  10. Diamantoulakis, P., Kapinas, V., Karagiannidis, G.: Big data analytics for dynamic energy management in smart grids. Big Data Res. 2(3), 94–101 (2015). https://doi.org/10.1016/j.bdr.2015.03.003

    Article  Google Scholar 

  11. Alahakoon, D., Yu, X.: Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans. Ind. Inf. 12(1), 425–436 (2016). https://doi.org/10.1109/TII.2015.2414355

    Article  Google Scholar 

  12. Uribe-Pérez, N., Hernández, L., de la Vega, D., Angulo, I.: State of the art and trends review of smart metering in electricity grids. Appl. Sci. 6(68), 1–24 (2016). https://doi.org/10.3390/app6030068

    Article  Google Scholar 

  13. Riad, M.: Smart meters project. DLMEI Alliance (2019). http://www.dlmei.sci.eg/?q=en/smart%20meter

  14. Weranga, K., Kumarawadu, S., Chandima, D.: Smart metering design and applications. Springer, Singapore (2014). ISBN 978-981-4451-81-9

    Google Scholar 

  15. Wills, J., Ryza, S., Owen, S., Laserson, U.: Advanced Analytics with Spark. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  16. Guller, M.: Big Data Analytics with Spark. Apress, New York (2015). ISBN 978-1484209653

    Book  Google Scholar 

  17. Eichinger, F., Pathmaperuma, D., Vogt, H., Muller, E.: Data analysis challenges in the future energy domain. In: Yu, T., Chawla, N., Simoff, S. (eds.) Computational Intelligent Data Analysis for Sustainable Development, pp. 1–55. Taylor & Francis, Didcot (2013)

    Google Scholar 

  18. Lee, K., Cha, Y., Park, J.: Short-term load forecasting using an artificial neural network. IEEE Trans. Power Syst. 7(1), 124–132. https://doi.org/10.1109/59.141695

  19. Metaxiotis, K., Kagiannas, A., Askounis, D., Psarras, J.: Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher. Energy Conv. Manag. 44(9), 1525–1534 (2003). https://doi.org/10.1016/S0196-8904(02)00148-6

    Article  Google Scholar 

  20. El-Telbany, M., Fawwaz El-Karmi, F.: Short-term forecasting of Jordanian electricity demand using particle swarm optimization. Electr. Power Syst. Res. 78(3), 425–433 (2008). https://doi.org/10.1016/j.epsr.2007.03.011

    Article  Google Scholar 

  21. Chicco, G.: Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42(1), 68–80 (2012). https://doi.org/10.1016/j.energy.2011.12.031

    Article  Google Scholar 

  22. Wijaya, T., Ganu, T., Chakraborty, D., Aberer, K., Seetharam, D.: Consumer segmentation and knowledge extraction from smart meter and survey data. In: 14th SIAM International Conference on Data Mining (SDM), pp. 226–234 (2014). https://doi.org/10.1137/1.9781611973440.26

  23. Chen, F., Dai, J., Wang, B., Sahu, S., Naphade, M., Lu, C.: Activity analysis based on low sample rate smart meters. In: 17th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 240–248. ACM (2011). https://doi.org/10.1145/2020408.2020450

  24. Mashima, D., Cardenas, A.: Evaluating electricity theft detectors in smart grid networks. In: Balzarotti, D., Stolfo, S., Cova, M. (eds.) Research in Attacks, Intrusions, and Defenses, LNCS, vol. 7462 , pp. 210–229. Springer, Heidelberg (2012)

    Google Scholar 

  25. Marin, F., Garcia-Lagos, F., Joya, G., Sandoval, F.: Global model for short-term load forecasting using artificial neural networks. IEE Proc. Gener. Transm. Distrib. 149(2), 121 (2002)

    Article  Google Scholar 

  26. Ceperic, E., Ceperic, V., Baric, A.: A strategy for short-term load forecasting by support vector regression machines. IEEE Trans. Power Syst. 28(4), 4356–4364 (2013). https://doi.org/10.1109/TPWRS.2013.2269803

    Article  Google Scholar 

  27. Rodrigues, F., Cardeira, C., Calado, J.: The daily and hourly energy consumption and load forecasting using artificial neural network method: a case study using a set of 93 households in Portugal. Energy Procedia 62, 220–229 (2014). https://doi.org/10.1016/j.egypro.2014.12.383

    Article  Google Scholar 

  28. Ouyang, T., He, Y., Li, H., Sun, Z., Baek, S.: A deep learning framework for short-term power load forecasting. CoRR (2017). https://doi.org/10.1109/TETCI.2018.2880511

    Article  Google Scholar 

  29. He, W.: Deep neural network based load forecast. Comput. Model. New Technol. 18(3), 258–262 (2014). http://www.cmnt.lv/upload-files/ns_8art43_CMNT1803-34_N289_He.pdf

  30. Tian, C., Ma, J., Zhang, C., Zhan, P.: A deep neural network model for short-term load forecast based on long short-term memory network and convolutional neural network. Energies 11(3493), 1–13 (2018). https://doi.org/10.3390/en11123493

    Article  Google Scholar 

  31. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). ISBN 9780262035613

    MATH  Google Scholar 

  32. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011), pp. 315–323 (2011)

    Google Scholar 

  33. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012). https://doi.org/10.1145/3065386

  34. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  35. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous systems Software, vol. 1 (2015). http://tensorflow.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed E. El-Telbany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Telbany, M.E. (2020). Prediction of the Electrical Load for Egyptian Energy Management Systems: Deep Learning Approach. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_23

Download citation

Publish with us

Policies and ethics