Skip to main content

Sashimi: Cutting up CSI-FiSh Secret Keys to Produce an Actively Secure Distributed Signing Protocol

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2020)

Abstract

We present the first actively secure variant of a distributed signature scheme based on isogenies. The protocol produces signatures from the recent CSI-FiSh signature scheme. Our scheme works for any access structure, as we use a replicated secret sharing scheme to define the underlying secret sharing; as such it is only practical when the number of maximally unqualified sets is relatively small. This, however, includes the important case of full threshold, and (nt)-threshold schemes when n is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For highest computational efficiency [1] selects, for \(\mathsf {sec}=128\), the values \(S=2^{15}\) and \(t_\mathsf {S}=7\), using a hash function which is \(2^{16}\) times slower than SHA-3.

References

  1. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. IACR Cryptology ePrint Archive 2019, 498 (2019). https://eprint.iacr.org/2019/498

  2. Brandao, L.T.A.N., Davidson, M., Vassilev, A.: NIST 8214A (Draft): towards NIST standards for threshold schemes for cryptographic primitives: a preliminary roadmap (2019). https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8214A-draft.pdf

  3. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  4. Cogliati, B., et al.: Provable security of (tweakable) block ciphers based on substitution-permutation networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 722–753. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_24

    Chapter  Google Scholar 

  5. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006). http://eprint.iacr.org/2006/291

  6. Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures. IACR Cryptology ePrint Archive 2019, 1060 (2019). https://eprint.iacr.org/2019/1060

  7. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_19

    Chapter  Google Scholar 

  8. Damgård, I., Koprowski, M.: Practical threshold RSA signatures without a trusted dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_10

    Chapter  Google Scholar 

  9. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26

    Chapter  Google Scholar 

  10. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved rejection sampling. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 271–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_15

    Chapter  Google Scholar 

  11. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy, pp. 980–997. IEEE Computer Society Press, May 2018

    Google Scholar 

  12. Feo, L.D., Meyer, M.: Threshold schemes from isogeny assumptions. IACR Cryptology ePrint Archive 2019, 1288 (2019). https://eprint.iacr.org/2019/1288

  13. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1179–1194. ACM Press, October 2018

    Google Scholar 

  14. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9

    Chapter  MATH  Google Scholar 

  15. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_31

    Chapter  Google Scholar 

  16. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_21

    Chapter  Google Scholar 

  17. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1837–1854. ACM Press, October 2018

    Google Scholar 

  18. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint Archive 2018, 987 (2018). https://eprint.iacr.org/2018/987

  19. MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_8

    Chapter  Google Scholar 

  20. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/2006/145

  21. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  Google Scholar 

  22. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, NTNU (2012)

    Google Scholar 

  23. Vélu, J.: Isogènies entre courbes elliptiques. C.R. Acad. Sc. Paris, Série 273, 238–241 (1971)

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Frederik Vercauteren for the numerous and useful discussions on the arithmetic of isogenies. This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the FWO under an Odysseus project GOH9718N and by CyberSecurity Research Flanders with reference number VR20192203. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC or FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cozzo, D., Smart, N.P. (2020). Sashimi: Cutting up CSI-FiSh Secret Keys to Produce an Actively Secure Distributed Signing Protocol. In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2020. Lecture Notes in Computer Science(), vol 12100. Springer, Cham. https://doi.org/10.1007/978-3-030-44223-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44223-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44222-4

  • Online ISBN: 978-3-030-44223-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics