Skip to main content

Unintended Consequences: Effects of Submarine Cable Deployment on Internet Routing

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12048))

Included in the following conference series:

Abstract

We use traceroute and BGP data from globally distributed Internet measurement infrastructures to study the impact of a noteworthy submarine cable launch connecting Africa to South America. We leverage archived data from RIPE Atlas and CAIDA Ark platforms, as well as custom measurements from strategic vantage points, to quantify the differences in end-to-end latency and path lengths before and after deployment of this new South-Atlantic cable. We find that ASes operating in South America significantly benefit from this new cable, with reduced latency to all measured African countries. More surprising is that end-to-end latency to/from some regions of the world, including intra-African paths towards Angola, increased after switching to the cable. We track these unintended consequences to suboptimally circuitous IP paths that traveled from Africa to Europe, possibly North America, and South America before traveling back to Africa over the cable. Although some suboptimalities are expected given the lack of peering among neighboring ASes in the developing world, we found two other causes: (i) problematic intra-domain routing within a single Angolese network, and (ii) suboptimal routing/traffic engineering by its BGP neighbors. After notifying the operating AS of our results, we found that most of these suboptimalities were subsequently resolved. We designed our method to generalize to the study of other cable deployments or outages and share our code to promote reproducibility and extension of our work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Submarine Cable Networks, January 2020. https://www.submarinenetworks.com/en/

  2. Subsea World News, January 2020. https://subseaworldnews.com

  3. Angola Cables: Angola Cables Network, January 2020. https://www.angolacables.co.ao/en/network/

  4. Angola Cables: SACS, January 2020. https://sacs.angolacables.co.ao

  5. Angonix: Angonix - BIRD Looking Glass, January 2019. http://lg.angonix.net/

  6. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M., Magnien, C., Teixera, R.: Avoiding traceroute anomalies with Paris traceroute. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC), pp. 153–158. ACM, October 2006

    Google Scholar 

  7. Berenguer, S.S., Carisimo, E., Alvarez-Hamelin, J.I., Pintor, F.V.: Hidden Internet topologies info: truth or myth? In: Proceedings of the 2016 Workshop on Fostering Latin-American Research in Data Communication Networks, pp. 4–6 (2016)

    Google Scholar 

  8. Bischof, Z.S., Fontugne, R., Bustamante, F.E.: Submarine Cables and Internet Resiliency (2018). https://www.iij.ad.jp/en/dev/iir/pdf/iir_vol41_focus2_EN.pdf

  9. Bischof, Z.S., Fontugne, R., Bustamante, F.E.: Untangling the world-wide mesh of undersea cables. In: Proceedings of the 17th ACM Workshop on Hot Topics in Networks (HotNets), pp. 78–84. ACM (2018)

    Google Scholar 

  10. Bischof, Z.S., Rula, J.P., Bustamante, F.E.: In and out of Cuba: characterizing Cuba’s connectivity. In: Proceedings of the 2015 Internet Measurement Conference, pp. 487–493 (2015)

    Google Scholar 

  11. CAIDA: Archipelago (Ark) Measurement Infrastructure, January 2020. https://www.caida.org/projects/ark/

  12. CAIDA: AS Rank, January 2020. http://as-rank.caida.org

  13. CAIDA: AS Relationships, January 2020. http://www.caida.org/data/as-relationships

  14. CAIDA: CAIDA Internet eXchange Point (IXP) Dataset, January 2020. http://www.caida.org/data/ixps/

  15. CAIDA: Henya, January 2020. https://www.caida.org/tools/utilities/henya/

  16. CAIDA: MIDAR, January 2020. http://www.caida.org/tools/measurement/midar/

  17. CAIDA: The IPv4 Routed /24 Topology Dataset, January 2020. http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

  18. CAIDA: Vela, January 2020. https://vela.caida.org

  19. CAIDA: Velasq, January 2020. https://www.caida.org/projects/ark/vela/aliasq-api/

  20. Center for Applied Internet Data Analysis (CAIDA): Macroscopic Internet Topology Data Kit (ITDK), January 2019. http://www.caida.org/data/internet-topology-data-kit/

  21. Chang, R., Chan, E., Li, W., Fok, W., Luo, X.: Could ash cloud or deep-sea current overwhelm the Internet? In: Proceedings of USENIX Workshop on Hot Topics in System Dependability (HotDep), October 2010

    Google Scholar 

  22. Chung, T., Aben, E., Bruijnzeels, T., Chandrasekaran, B., Choffnes, D., Levin, D., Maggs, B.M., Mislove, A., Rijswijk-Deij, R.V., Rula, J., et al.: RPKI is coming of age: a longitudinal study of RPKI deployment and invalid route origins. In: Proceedings of the Internet Measurement Conference, pp. 406–419 (2019)

    Google Scholar 

  23. Clark, B.: Undersea cables and the future of submarine competition. Bull. Atom. Sci. 72(4), 234–237 (2016)

    Article  Google Scholar 

  24. Dawn-Hiscox, T.: Angola cables lights up world’s first submarine cable linking Africa to the Americas, September 2019. https://www.datacenterdynamics.com/news/angola-cables-lights-up-worlds-first-submarine-cable-linking-africa-to-the-americas/

  25. Digital Element: Netacuity, January 2020. http://www.digital-element.net/ip_intelligence/ip_intelligence.html

  26. Doug, M.: First Subsea Cable Across South Atlantic Activated, September 2018. https://internetintel.oracle.com/blog-single.html?id=First+Subsea+Cable+Across+South+Atlantic+Activated

  27. Doug, M., Darwin, C., Humberto, G.: South Atlantic Cable System the Impact on the Internet LACNIC 30 - Lightning Talk, September 2018. https://www.lacnic.net/innovaportal/file/3209/1/sacs_lightning_talk_lacnic30.pdf

  28. Durumeric, Z., Pearce, P.: Fast CLI DNS Lookup Tool, September 2019. https://github.com/zmap/zdns

  29. Fanou, R., Francois, P., Aben, E.: On the diversity of interdomain routing in Africa. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015. LNCS, vol. 8995, pp. 41–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15509-8_4

    Chapter  Google Scholar 

  30. Fanou, R., Francois, P., Aben, E., Mwangi, M., Goburdhan, N., Valera, F.: Four years tracking unrevealed topological changes in the African interdomain. Comput. Commun. 106, 117–135 (2017)

    Article  Google Scholar 

  31. Fanou, R., Huffaker, B., Mok, R.K., Claffy, K.: Submarine Cable Impact Analysis: Public Codebase, January 2020. https://github.com/CAIDA/submarine-cable-impact-analysis-public

  32. Formoso, A., Chavula, J., Phokeer, A., Sathiaseelan, A., Tyson, G.: Deep Diving into Africa’s Inter-Country Latencies. In: IEEE Conference on Computer Communications (INFOCOM) (2018)

    Google Scholar 

  33. Gharaibeh, M., Shah, A., Huffaker, B., Zhang, H., Ensafi, R., Papadopoulos, C.: A look at router geolocation in public and commercial databases. In: Proceedings of the ACM Internet Measurement Conference (IMC) (2017)

    Google Scholar 

  34. Gupta, A., Calder, M., Feamster, N., Chetty, M., Calandro, E., Katz-Bassett, E.: Peering at the Internet’s Frontier: a first look at ISP interconnectivity in Africa. In: International Conference on Passive and Active Network Measurement (PAM), March 2014

    Google Scholar 

  35. Huffaker, B., Fomenkov, M., Claffy, K.: Geocompare: a comparison of public and commercial geolocation databases. In: Proceedings of NMMC, pp. 1–12 (2011)

    Google Scholar 

  36. Humberto, G.: South Atlantic Cable System - SACS The Impact on the Internet WTR POP-BA/RNP 2018 - Lightning Talk (2018). https://wtr.pop-ba.rnp.br/2018/files/apresentacoes/10-WTR2018-LT02-AngolaCables-HumbertoGaliza.pdf

  37. Hyun, Y.: Dolphin: Bulk DNS Resolution Tool, June 2014. http://www.caida.org/publications/presentations/2014/dolphin_dhs/dolphin_dhs.pdf

  38. Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed Internet routing convergence. ACM SIGCOMM Comput. Commun. Rev. 30(4), 175–187 (2000)

    Article  Google Scholar 

  39. Lodhi, A., Larson, N., Dhamdhere, A., Dovrolis, C., Claffy, K.: Using PeeringDB to understand the peering ecosystem. ACM SIGCOMM Comput. Commun. Rev. 44(2), 20–27 (2014)

    Article  Google Scholar 

  40. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., Claffy, K.: AS relationships, customer cones, and validation. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 243–256 (2013)

    Google Scholar 

  41. Mahlknecth, G.: Greg Mahlknecth’s Cable Map, January 2020. https://cablemap.info/_default.aspx

  42. Marder, A., Luckie, M., Dhamdhere, A., Huffaker, B., Smith, J.M., et al.: Pushing the boundaries with bdrmapIT: mapping router ownership at Internet scale. In: Proceedings of the ACM Internet Measurement Conference (IMC) (2018)

    Google Scholar 

  43. MaxMind: GeoIP, August 2019. https://dev.maxmind.com/geoip/geoip2/geoip2-city-country-csv-databases/

  44. Mayer, D.: University of Oregon Route-Views Archive Project, January 2020. http://routeviews.org

  45. Padmanabhan, R., Schulman, A., Levin, D., Spring, N.: Residential links under the weather. In: ACM Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM), pp. 145–158 (2019)

    Google Scholar 

  46. PeeringDB, April 2019. https://www.peeringdb.com/

  47. PeeringDB: Angola Cables, January 2020. https://www.peeringdb.com/net/4894

  48. Phil, E.: A Map of all the Underwater Cables that Connect the Internet, November 2015. https://www.vox.com/2015/3/13/8204655/submarine-cables-internet

  49. Poese, I., Uhlig, S., Kaafar, M.A., Donnet, B., Gueye, B.: IP geolocation databases: unreliable? ACM SIGCOMM Comput. Commun. Rev. 4(2), 53–56 (2011)

    Article  Google Scholar 

  50. Prior, B.: Teraco Data Centres Will Benefit from SACS Cable, November 2018. https://mybroadband.co.za/news/cloud-hosting/284682-teraco-data-centres-will-benefit-from-sacs-cable.html

  51. RIPE NCC: Global RIPE Atlas Network Coverage, January 2020. https://atlas.ripe.net/results/maps/network-coverage/

  52. RIPE NCC: RIPE Atlas: Built-in Measurements, January 2020. https://atlas.ripe.net/docs/built-in/

  53. RIPE NCC: RIPE RIS, January 2020. https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/

  54. RIPE NCC: RIPE Stats, January 2020. https://stat.ripe.net/

  55. Shah, A., Fontugne, R., Papadopoulos, C.: Towards characterizing international routing detours. In: Proceedings of the ACM Asian Internet Engineering Conference (AINTEC) (2016)

    Google Scholar 

  56. Submarine Cable Networks: SACS, March 2018. https://www.submarinenetworks.com/systems/brazil-africa/sacs

  57. Subsea World News: South Atlantic Cable System Launched in Angola, August 2019. https://subseaworldnews.com/2017/08/09/south-atlantic-cable-system-launched-in-angola/

  58. Telegeography: Submarine Cable Frequently Asked Questions, January 2020. https://www2.telegeography.com/submarine-cable-faqs-frequently-asked-questions

  59. Telegeography: Telegeography Submarine Cable Map, January 2020. https://www.submarinecablemap.com/

  60. Vermeulen, J.: From Brazil to South Africa and Back in 98ms, April 2019. https://mybroadband.co.za/news/broadband/303574-from-brazil-to-south-africa-and-back-in-98ms.html

Download references

Acknowledgment

We thank the anonymous reviewers and our shepherd, Fabian Bustamante, for their insightful comments. We also thank Angola Cables, especially their IP services department, for their cooperation, despite their tight schedule and Stephen Strowes for the introductions. This research was supported by the National Science Foundation (NSF) grant OAC-1724853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodérick Fanou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fanou, R., Huffaker, B., Mok, R., Claffy, K.C. (2020). Unintended Consequences: Effects of Submarine Cable Deployment on Internet Routing. In: Sperotto, A., Dainotti, A., Stiller, B. (eds) Passive and Active Measurement. PAM 2020. Lecture Notes in Computer Science(), vol 12048. Springer, Cham. https://doi.org/10.1007/978-3-030-44081-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44081-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44080-0

  • Online ISBN: 978-3-030-44081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics