Skip to main content

MRI in Spine Anatomy

  • Chapter
  • First Online:
  • 1426 Accesses

Abstract

The spinal column is a complex mechanical structure and protects the spinal cord and nerve roots. It performs multidirectional movements, including flexion, extension, rotation, and lateral bending. MR imaging is well established to evaluate the adult and pediatric spine for many conditions, including degenerative, traumatic, neoplastic, and congenital diseases. Here, we will review some basic anatomy of the spine, focusing on MRI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hubaud A, Pourquie O. Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol. 2014;15(11):709–21.

    Article  CAS  PubMed  Google Scholar 

  2. Scaal M, Christ B. Formation and differentiation of the avian dermomyotome. Anat Embryol. 2004;208(6):411–24.

    Article  PubMed  Google Scholar 

  3. Christ B, Huang R, Scaal M. Formation and differentiation of the avian sclerotome. Anat Embryol. 2004;208(5):333–50.

    Article  PubMed  Google Scholar 

  4. Choi KS, Harfe BD. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs. Proc Natl Acad Sci U S A. 2011;108(23):9484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Christ B, Huang R, Wilting J. The development of the avian vertebral column. Anat Embryol (Berl). 2000;202(3):179–94.

    Article  CAS  Google Scholar 

  6. Monsoro-Burq AH, Le Douarin N. Duality of molecular signaling involved in vertebral chondrogenesis. Curr Top Dev Biol. 2000;48:43–75.

    Article  CAS  PubMed  Google Scholar 

  7. Pickett EA, Olsen GS, Tallquist MD. Disruption of PDGFRalpha-initiated PI3K activation and migration of somite derivatives leads to spina bifida. Development. 2008;135(3):589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Serra R. PDGF mediates TGFbeta-induced migration during development of the spinous process. Dev Biol. 2012;365(1):110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aruga J, et al. Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev. 1999;89(1–2):141–50.

    Article  CAS  PubMed  Google Scholar 

  10. Scaal M. Early development of the vertebral column. Semin Cell Dev Biol. 2016;49:83–91.

    Article  PubMed  Google Scholar 

  11. Huang R, et al. Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Cells Tissues Organs. 1996;155(4):231–41.

    Article  CAS  Google Scholar 

  12. Waxenbaum JA, Futterman B. Anatomy, back, intervertebral discs. Treasure Island (FL): StatPearls Publishing; 2019.

    Google Scholar 

  13. Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113(2):235–48.

    Article  CAS  PubMed  Google Scholar 

  14. Paik NC, Lim CS, Jang HS. Numeric and morphological verification of lumbosacral segments in 8280 consecutive patients. Spine (Phila Pa 1976). 2013;38(10):E573–8.

    Article  Google Scholar 

  15. Bland JH, Boushey DR. Anatomy and physiology of the cervical spine. Semin Arthritis Rheum. 1990;20(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  16. Kocabiyik N, Ercikti N, Tunali S. Morphometric analysis of the uncinate processes of the cervical vertebrae. Folia Morphol (Warsz). 2017;76(3):440–5.

    Article  CAS  Google Scholar 

  17. Kotani Y, et al. The role of anteromedial foraminotomy and the uncovertebral joints in the stability of the cervical spine. A biomechanical study. Spine (Phila Pa 1976). 1998;23(14):1559–65.

    Article  CAS  Google Scholar 

  18. Ebraheim NA, et al. Quantitative anatomy of the cervical facet and the posterior projection of its inferior facet. J Spinal Disord. 1997;10(4):308–16.

    CAS  PubMed  Google Scholar 

  19. Pesch HJ, et al. On the pathogenesis of spondylosis deformans and arthrosis uncovertebralis: comparative form-analytical radiological and statistical studies on lumbar and cervical vertebral bodies. Arch Orthop Trauma Surg. 1984;103(3):201–11.

    Article  CAS  PubMed  Google Scholar 

  20. Tubbs RS, et al. Ligaments of the craniocervical junction. J Neurosurg Spine. 2011;14(6):697–709.

    Article  PubMed  Google Scholar 

  21. Moon SM, et al. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J. 2013;22(8):1820–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McCann MR, et al. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech. 2012;5(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  23. Rodrigues-Pinto R, Richardson SM, Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J. 2014;23(9):1803–14.

    Article  PubMed  Google Scholar 

  24. Chen S, et al. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res. 2017;370(1):53–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mills MK, Shah LM. Imaging of the perivertebral space. Radiol Clin N Am. 2015;53(1):163–80.

    Article  PubMed  Google Scholar 

  26. Hu ZJ, Fang XQ, Fan SW. Iatrogenic injury to the erector spinae during posterior lumbar spine surgery: underlying anatomical considerations, preventable root causes, and surgical tips and tricks. Eur J Orthop Surg Traumatol. 2014;24(2):127–35.

    Article  PubMed  Google Scholar 

  27. Rojas CA, et al. Normal thickness and appearance of the prevertebral soft tissues on multidetector CT. Am J Neuroradiol. 2009;30(1):136–41.

    Article  CAS  PubMed  Google Scholar 

  28. Bromage PR. Epidural analgesia. Philadelphia/London: WB Saunders Company; 1978.

    Google Scholar 

  29. Nickalls RW, Kokri MS. The width of the posterior epidural space in obstetric patients. Anaesthesia. 1986;41(4):432–3.

    Article  CAS  PubMed  Google Scholar 

  30. Paksoy Y, Gormus N. Epidural venous plexus enlargements presenting with radiculopathy and back pain in patients with inferior vena cava obstruction or occlusion. Spine (Phila Pa 1976). 2004;29(21):2419–24.

    Article  Google Scholar 

  31. Richardson J, Groen GJ. Applied epidural anatomy. BJA Edu. 2005;5(3):98–100.

    Google Scholar 

  32. Cheung JP, et al. Defining clinically relevant values for developmental spinal stenosis: a large-scale magnetic resonance imaging study. Spine (Phila Pa 1976). 2014;39(13):1067–76.

    Article  Google Scholar 

  33. Cheung JP, Shigematsu H, Cheung KM. Verification of measurements of lumbar spinal dimensions in T1- and T2-weighted magnetic resonance imaging sequences. Spine J. 2014;14(8):1476–83.

    Article  PubMed  Google Scholar 

  34. Rabischong P. Anatomie fonctionnelle du rachis et de la moelle. In: Manelfe C, editor. Imagerie du rachis et de la moelle. Paris: Vigot; 1989. p. 109–34.

    Google Scholar 

  35. Revel M, et al. Variations morphologiques des trous de conjugaison lombaires lors de la flexion-extension et de l’affaissement discal. Rev Rhum Mal Osteoartic. 1988;5:361–6.

    Google Scholar 

  36. Panjabi MM, Takata K, Goel VK. Kinematics of lumbar intervertebral foramen. Spine. 1983;8(4):348–57.

    Article  CAS  PubMed  Google Scholar 

  37. Inufusa A, et al. Anatomic changes of the spinal canal and intervertebral foramen associated with flexion-extension movement. Spine. 1996;21(21):2412–20.

    Article  CAS  PubMed  Google Scholar 

  38. Van Schoor A-N, Bosman MC, Bosenberg AT. Descriptive study of the differences in the level of the conus medullaris in four different age groups. Clin Anat. 2015;28(5):638–44.

    Article  PubMed  Google Scholar 

  39. Demiryurek D, et al. MR imaging determination of the normal level of conus medullaris. Clin Imaging. 2002;26(6):375–7.

    Article  PubMed  Google Scholar 

  40. Nasr AY. Vertebral level and measurements of conus medullaris and dural sac termination with special reference to the apex of the sacral hiatus: anatomical and magnetic resonance imaging radiologic study. Folia Morphol (Warsz). 2016;75(3):287–99.

    Article  CAS  Google Scholar 

  41. Liu A, et al. Level of conus medullaris termination in adult population analyzed by kinetic magnetic resonance imaging. Surg Radiol Anat. 2017;39(7):759–65.

    Article  PubMed  Google Scholar 

  42. Liccardo G, et al. Fifth ventricle: an unusual cystic lesion of the conus medullaris. Spinal Cord. 2005;43(6):381–4.

    Article  CAS  PubMed  Google Scholar 

  43. Cools MJ, et al. Filum terminale lipomas: imaging prevalence, natural history, and conus position. J Neurosurg Pediatr. 2014;13(5):559–67.

    Article  PubMed  Google Scholar 

  44. Fitzgerald MJT, Mtui E, Gruener G. Clinical neuroanatomy, and neuroscience. Edinburgh: Saunders/Elsevier; 2012.

    Google Scholar 

  45. Kulkarni B, et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21(11):3133–42.

    Article  CAS  PubMed  Google Scholar 

  46. De Ridder D, et al. Burst spinal cord stimulation for limb and back pain. World Neurosurg. 2013;80(5):642–649.e1.

    Article  PubMed  Google Scholar 

  47. Demondion X, et al. Radiographic anatomy of the intervertebral cervical and lumbar foramina (vessels and variants). Diagn Interv Imaging. 2012;93(9):690–7.

    Article  CAS  PubMed  Google Scholar 

  48. Thron AK. Vascular anatomy of the spinal cord: neuroradiological investigations and clinical syndromes. Wien/New York: Springer Science & Business Media; 1988.

    Book  Google Scholar 

  49. Groen GJ, Baljet B, Drukker J. Nerves and nerve plexuses of the human vertebral column. Am J Anat. 1990;188(3):282–96.

    Article  CAS  PubMed  Google Scholar 

  50. Hartman J. Anatomy and clinical significance of the uncinate process and uncovertebral joint: a comprehensive review. Clin Anat. 2014;27(3):431–40.

    Article  PubMed  Google Scholar 

  51. Johnson GM. The sensory and sympathetic nerve supply within the cervical spine: review of recent observations. Man Ther. 2004;9(2):71–6.

    Article  PubMed  Google Scholar 

  52. Wozniak W, Grzymislawska M. Innervation of the human cervical and thoracic vertebrae at eight postovulatory weeks. Folia Morphol (Warsz). 2009;68(2):84–7.

    CAS  Google Scholar 

  53. Chua WH, Bogduk N. The surgical anatomy of thoracic facet denervation. Acta Neurochir. 1995;136(3–4):140–4.

    Article  CAS  PubMed  Google Scholar 

  54. Higuchi K, Sato T. Anatomical study of lumbar spine innervation. Folia Morphol (Warsz). 2002;61(2):71–9.

    Google Scholar 

  55. Bogduk N. Clinical anatomy of the lumbar spine and sacrum. Edinburgh: Churchill Livingstone; 1997.

    Google Scholar 

  56. Ricci C, et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology. 1990;177(1):83–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Karambelkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karambelkar, A. (2020). MRI in Spine Anatomy. In: Morrison, W., Carrino, J., Flanders, A. (eds) MRI of the Spine. Springer, Cham. https://doi.org/10.1007/978-3-030-43627-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43627-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43626-1

  • Online ISBN: 978-3-030-43627-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics