Skip to main content

Percolation on Homology Generators in Codimension One

  • Conference paper
  • First Online:
Topological Data Analysis

Part of the book series: Abel Symposia ((ABEL,volume 15))

Abstract

This paper introduces a new percolation model motivated from polymer materials. The mathematical model is defined over a random cubical set in the d-dimensional space \(\mathbb {R}^d\) and focuses on generations and percolations of (d − 1)-dimensional holes as higher dimensional topological objects. Here, the random cubical set is constructed by the union of unit faces in dimension d − 1 which appear randomly and independently with probability p, and holes are formulated by the homology generators. Under this model, the upper and lower estimates of the critical probability \(p_c^{\operatorname {hole}}\) of the hole percolation are shown in this paper, implying the existence of the phase transition. The uniqueness of infinite hole cluster is also proven. This result shows that, in the supercritical phase, \(p > p_c^{\operatorname {hole}}\), the probability \(P_p(x^* \overset {\mathrm {hole}}{\longleftrightarrow } y^*)\) that two points in the dual lattice \((\mathbb {Z}^d)^*\) belong to the same hole cluster is uniformly greater than 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A finite-dimensional cylinder set is a set \(\{\omega \in \Omega : \omega _{e_i} = \epsilon _i, i = 1,2, \ldots ,n\}\) for some \(n \in \mathbb {N}\), \(e_1, \ldots , e_n \in {\mathbb {E}^d}\) and 𝜖 i ∈{0,  1}.

References

  1. Aizenman, M., Chayes, J., Chayes, L., Frőhlich, J., Russo, L.: On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys. 92, 19–69 (1983)

    Google Scholar 

  2. Aizenman, M., Kesten, H., Newman, C.: Uniqueness of the infinite cluster and continuity of connectivity functions for short- and long-range percolation, Comm. Math. Phys. 92, 505–532 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey. J. Appl. Comput. Topology. https://doi.org/10.1007/s41468-017-0010-0.

  4. Erdős, P., Rényi, A.: On the Evolution of Random Graphs. Publ. Math. Inst. Hungarian Acad. Sci. 5A, 17–61 (1960)

    Google Scholar 

  5. Fitzner, R., Hofstad, R.: Mean-field behavior for nearest-neighbor percolation in d > 10, Electron. J. Probab. 22, no. 43, 1–65 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Grimmett, G., Holroyd, A., Kozma, G.: Percolation of finite clusters and infinite surfaces, Math. Proc. Cambridge Philos. Soc. 156, no. 2, 263–279 (2014)

    Article  MathSciNet  Google Scholar 

  7. Grimmett, G., Holroyd, A.: Plaquettes, Spheres, and Entanglement. Electron. J. Probab. 15, 1415–1428 (2010)

    Article  MathSciNet  Google Scholar 

  8. Grimmett, G.: Percolation. Springer-Verlag, Berlin (1999)

    Book  Google Scholar 

  9. Harris, T.: A lower bound for the critical probability in a certain percolation process. Math. Proc. Camb. Philos. Soc. 56, 13–20 (1960)

    Article  MathSciNet  Google Scholar 

  10. Hiraoka, Y., Tsunoda, K.: Limit theorems for random cubical homology. Dicrete Comput. Geom. 60, 665–687 (2018)

    Article  MathSciNet  Google Scholar 

  11. Ichinomiya, T., Obayashi, I., Hiraoka, Y.: Persistent homology analysis of craze formation. Phys. Rev. E. 95, 012504 (2017)

    Article  Google Scholar 

  12. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer-Verlag, New York (2004)

    Book  Google Scholar 

  13. Kahle, M.: Topology of random simplicial complexes: a survey. In: Algebraic Topology: applications and new directions. Contemp. Math. 620 (Tillmann, U., Galatius, S., Sinha, D. eds.). pp. 201–221. Amer. Math. Soc., Providence (2014)

    Google Scholar 

  14. Kesten, H.: The critical probability of bond percolation on the square lattice equals \(\frac {1}{2}\). Comm. Math. Phys. 74, 41–59 (1980)

    Google Scholar 

  15. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  16. Menshikov, M.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR. 288(6), 1308–1311 (1986)

    MathSciNet  Google Scholar 

  17. Werman, M., Wright, M.L.: Intrinsic volumes of random cubical complexes. Discrete Comput. Geom. 56, 93–113 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tomoyuki Shirai, Kenkichi Tsunoda and Masato Takei for their valuable suggestions and useful discussions. This work is partially supported by JST CREST Mathematics 15656429 and JSPS Grant-in-Aid for challenging Exploratory Research 17829801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Mikami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hiraoka, Y., Mikami, T. (2020). Percolation on Homology Generators in Codimension One. In: Baas, N., Carlsson, G., Quick, G., Szymik, M., Thaule, M. (eds) Topological Data Analysis. Abel Symposia, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-43408-3_12

Download citation

Publish with us

Policies and ethics