Skip to main content

A Numerical Scheme for Evacuation Dynamics

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12044))

Abstract

We give a stability condition for a semi–implicit numerical scheme and prove unconditional stability for an implicit scheme for a nonlinear advection – diffusion equation, meant as a model of crowd dynamics. Numerical stability is given for a wider class of equations and schemes.

Supported by ICM, University of Warsaw.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borsche, R., Colombo, R.M., Garavello, M., Meurer, A.: Differential equations modeling crowd interactions. J. Nonlinear Sci. 25, 827–859 (2015)

    Article  MathSciNet  Google Scholar 

  2. Colombo, R.M., Gokieli, M., Rosini, M.D.: Modeling crowd dynamics through hyperbolic - elliptic equations. In: Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis – The Helge Holden Anniversary Volume, pp. 111–128. EMS Series of Congress Reports, May 2018

    Google Scholar 

  3. Gokieli, M.: An advection-diffusion equation as model for crowd evacuation (to appear)

    Google Scholar 

  4. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B: Methodol. 36(6), 507–535 (2002)

    Article  Google Scholar 

  5. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35(1), 169–182 (2003)

    Article  MathSciNet  Google Scholar 

  6. Jiang, Y., Zhou, S., Tian, F.-B.: Macroscopic pedestrian flow model with degrading spatial information. J. Comput. Sci. 10, 36–44 (2015)

    Article  Google Scholar 

  7. Kachroo, P.: Pedestrian Dynamics: Mathematical Theory and Evacuation Control. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  8. Kamga, J.-B.A., Després, B.: CFL condition and boundary conditions for DGM approximation of convection-diffusion. SIAM J. Numer. Anal. 44(6), 2245–2269 (2006)

    Article  MathSciNet  Google Scholar 

  9. Szczepańczyk, A.: Master’s thesis. University of Warsaw, Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) (to appear)

    Google Scholar 

  10. Twarogowska, M., Goatin, P., Duvigneau, R.: Macroscopic modeling and simulations of room evacuation. Appl. Math. Model. 38(24), 5781–5795 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gokieli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gokieli, M., Szczepańczyk, A. (2020). A Numerical Scheme for Evacuation Dynamics. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43222-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43221-8

  • Online ISBN: 978-3-030-43222-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics