Skip to main content

Oxygen in the Tumor Microenvironment: Mathematical and Numerical Modeling

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1259))

Abstract

There are many reasons to try to achieve a good grasp of the distribution of oxygen in the tumor microenvironment. The lack of oxygen – hypoxia – is a main actor in the evolution of tumors and in their growth and appears to be just as important in tumor invasion and metastasis. Mathematical models of the distribution of oxygen in tumors which are based on reaction-diffusion equations provide partial but qualitatively significant descriptions of the measured oxygen concentrations in the tumor microenvironment, especially when they incorporate important elements of the blood vessel network such as the blood vessel size and spatial distribution and the pulsation of local pressure due to blood circulation. Here, we review our mathematical and numerical approaches to the distribution of oxygen that yield insights both on the role of the distribution of blood vessel density and size and on the fluctuations of blood pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Formally, the diffusion equation for heat is the combined result of Fick’s law applied to thermal current J and temperature, J = −KT, where K is the thermal conductivity, of the conservation of energy applied to the thermal current and internal (thermal) energy U,

    $$\displaystyle \begin{aligned}-\frac{\partial U}{\partial t} = \nabla\cdot \boldsymbol{J},\end{aligned}$$

    and of the relation between internal energy and temperature, ΔU = C ΔT, where C is the constant-volume thermal capacity, so that one finds the multidimensional diffusion equation for temperature

    $$\displaystyle \begin{aligned} \frac{\partial T}{\partial t} = D \nabla^2 T, \end{aligned}$$

    with D = KC.

  2. 2.

    A “superposition” is just a linear combination as in the text, and whenever the principle holds, then any superposition of solutions is also a solution. Much of the value of the principle comes from experiment rather than theory: if one finds experimentally that the principle holds, then one knows that the underlying equations must be linear, just as the diffusion equation.

  3. 3.

    We recall that the enzymatic activity – and therefore also the individual steps of the metabolic pathways – is often described by the Michaelis-Menten (MM) equation

    $$\displaystyle \begin{aligned} v = v_{\mathrm{max}} \frac{[S]}{K_m+[S]} \end{aligned}$$

    where v is the reaction rate and [S] is the concentration of the substrate (in our case, oxygen). The reaction rate depends on two parameters v max and K m which characterize the specific enzymatic process. The MM equation is unable to fit some of the observed reaction rates, which are sigmoid functions of the substrate concentration, and in this case, it is common to turn to the Hill equation, a phenomenological modification of the MM equation

    $$\displaystyle \begin{aligned} v = v_{\mathrm{max}} \frac{[S]^n}{K_m^n+[S]^n} \end{aligned}$$

    with one more parameter, the exponent n. For more details, see, e.g., [12].

  4. 4.

    In the jargon of High Performance Computing, this is the experimenter’s actual waiting time for the completion of the simulation.

References

  1. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, vol 6. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  2. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457

    Google Scholar 

  3. Saggar JK, Yu M, Tan Q, Tannock IF (2013) The tumor microenvironment and strategies to improve drug distribution. Front Oncol 3:154

    PubMed  PubMed Central  Google Scholar 

  4. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449

    CAS  PubMed  Google Scholar 

  5. Vaupel P, Harrison L (2004) Tumor Hypoxia: Causative Factors, Compensatory Mechanisms, and Cellular Response. Oncologist 9(Supplement 5):4

    Google Scholar 

  6. Bartkowiak K, Riethdorf S, Pantel K (2012) The Interrelating Dynamics of Hypoxic Tumor Microenvironments and Cancer Cell Phenotypes in Cancer Metastasis. Cancer Microenviron 5(1):59

    CAS  PubMed  Google Scholar 

  7. Dewhirst MW, Ong ET, Klitzman B, Secomb TW, Vinuya RZ, Dodge R, Brizel D, Gross JF (1992) Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat Res 130(2):171

    CAS  PubMed  Google Scholar 

  8. Cárdenas-Navia LI, Mace D, Richardson RA, Wilson DF, Shan S, Dewhirst MW (2008) The pervasive presence of fluctuating oxygenation in tumors. Cancer Res 68(14):5812

    PubMed  Google Scholar 

  9. Kirkpatrick JP, Brizel DM, Dewhirst MW (2003) A Mathematical Model of Tumor Oxygen and Glucose Mass Transport and Metabolism with Complex Reaction Kinetics. Radiat Res 159(3):336

    CAS  PubMed  Google Scholar 

  10. Grimes DR, Fletcher AG, Partridge M (2014) Oxygen consumption dynamics in steady-state tumour models. R Soc Open Sci 1(1):140080

    PubMed  PubMed Central  Google Scholar 

  11. Fourier J (1822) Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils

    Google Scholar 

  12. Voet D, Voet JG (2004) Biochemistry. John Wiley & Sons, Hoboken

    Google Scholar 

  13. Secomb TW, Hsu R, Park EY, Dewhirst MW (2004) Green’s Function Methods for Analysis of Oxygen Delivery to Tissue by Microvascular Networks. Ann Biomed Eng 32(11):1519

    PubMed  Google Scholar 

  14. Milotti E, Stella S, Chignola R (2017) Pulsation-limited oxygen diffusion in the tumour microenvironment. Sci Rep 7:39762

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Moore J, Hasleton P, Buckley C (1985) Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br J Cancer 51(3):407

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Milotti E, Vyshemirsky V, Sega M, Chignola R (2012) Interplay between distribution of live cells and growth dynamics of solid tumours. Sci Rep 2:990

    PubMed  PubMed Central  Google Scholar 

  17. Milotti E, Vyshemirsky V, Sega M, Stella S, Chignola R (2013) Metabolic scaling in solid tumours. Sci Rep 3:1938

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grote J, Süsskind R, Vaupel P (1977) Oxygen diffusivity in tumor tissue (DS-carcinosarcoma) under temperature conditions within the range of 20–40 C. Pflügers Archiv 372(1):37

    CAS  PubMed  Google Scholar 

  19. Hershey D, Miller CJ, Menke RC, Hesselberth JF (1967) Oxygen Diffusion Coefficients for Blood Flowing down a Wetted-Wall Column. In: Hershey D (ed) Chemical engineering in medicine and biology. Springer, New York, pp 117–134

    Google Scholar 

  20. Diepart C, Jordan BF, Gallez B (2009) A New EPR Oximetry Protocol to Estimate the Tissue Oxygen Consumption In Vivo. Radiat Res 172(2):220

    CAS  PubMed  Google Scholar 

  21. Diepart C, Verrax J, Calderon PB, Feron O, Jordan BF, Gallez B (2010) Comparison of methods for measuring oxygen consumption in tumor cells in vitro. Anal Biochem 396(2):250

    CAS  PubMed  Google Scholar 

  22. Diepart C, Magat J, Jordan BF, Gallez B (2011) In vivo mapping of tumor oxygen consumption using 19F MRI relaxometry. NMR Biomed 24(5):458

    CAS  PubMed  Google Scholar 

  23. Dadras SS, Lange-Asschenfeldt B, Muzikansky A, Mihm MC, Detmar M (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18:1232

    PubMed  Google Scholar 

  24. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH anMultiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applicationsd pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177

    CAS  PubMed  Google Scholar 

  25. Braun RD, Lanzen JL, Dewhirst MW (1999) Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. Am J Physiol Heart Circ Physiol 277(2):H551

    CAS  Google Scholar 

  26. Fredrich T, Welter M, Rieger H (2018) Tumorcode: A framework to simulate vascularized tumors. Eur Phys J E 41:1

    CAS  Google Scholar 

  27. Welter M, Bartha K, Rieger H (2009) Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. J Theor Biol 259(3):405

    CAS  PubMed  Google Scholar 

  28. Lubliner J (2008) Plasticity theory. Courier Corporation, North Chelmsford

    Google Scholar 

  29. Preziosi L, Tosin A (2009) Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J Math Biol 58(4–5):625

    PubMed  Google Scholar 

  30. Macklin P, McDougall S, Anderson AR, Chaplain MA, Cristini V, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4–5):765

    PubMed  Google Scholar 

  31. Welter M, Rieger H (2013) Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PLoS One 8(8):e70395

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hogea CS, Murray BT, Sethian JA (2006) Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J Math Biol 53(1):86

    PubMed  Google Scholar 

  33. Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer Science & Business Media, Berlin/Heidelberg

    Google Scholar 

  34. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Physics 79(1):12

    Google Scholar 

  35. Heroux M, Bartlett R, Hoekstra VHR, Hu J, Kolda T, Lehoucq R, Long K, Pawlowski R, Phipps E, Salinger A et al (2003) An overview of trilinos. Tech. rep., Citeseer

    Google Scholar 

  36. Welter M, Fredrich T, Rinneberg H, Rieger H (2016) Computational model for tumor oxygenation applied to clinical data on breast tumor hemoglobin concentrations suggests vascular dilatation and compression. PLoS One 11(8):e0161267

    PubMed  PubMed Central  Google Scholar 

  37. Rieger H, Welter M (2015) Integrative models of vascular remodeling during tumor growth. Wiley Interdiscip Rev Syst Biol Med 7(3):113

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldman D (2008) Theoretical models of microvascular oxygen transport to tissue. Microcirculation 15(8):795

    PubMed  PubMed Central  Google Scholar 

  39. Welter M, Rieger H (2016) Computer simulations of the tumor vasculature: applications to interstitial fluid flow, drug delivery, and oxygen supply. In: Rejniak KA (ed) Systems biology of tumor microenvironment. Springer, chap 3, pp 31–72

    Google Scholar 

  40. Chignola R, Sega M, Stella S, Vyshemirsky V, Milotti E (2014) From single-cell dynamics to scaling laws in oncology. Biophys Rev Lett 9(3):273

    Google Scholar 

  41. Milotti E, Chignola R (2010) Emergent properties of tumor microenvironment in a real-life model of multicell tumor spheroids. PLoS One 5(11):e13942

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chignola R, Milotti E (2005) A phenomenological approach to the simulation of metabolism and proliferation dynamics of large tumour cell populations. Phys Biol 2(1):8

    CAS  PubMed  Google Scholar 

  43. Chignola R, Del Fabbro A, Dalla Pellegrina C, Milotti E (2007) Ab initio phenomenological simulation of the growth of large tumor cell populations. Phys Biol 4(2):114

    CAS  PubMed  Google Scholar 

  44. Chignola R, Del Fabbro A, Farina M, Milotti E (2011) Computational challenges of tumor spheroid modeling. J Bioinform Comput Biol 9(4):559

    PubMed  Google Scholar 

  45. Milotti E, Del Fabbro A, Chignola R (2009) Numerical integration methods for large-scale biophysical simulations. Comput Phys Commun 180(11):2166

    CAS  Google Scholar 

  46. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177

    CAS  PubMed  Google Scholar 

  47. Fredrich T, Rieger H, Chignola R et al (2019) Fine-grained simulations of the microenvironment of vascularized tumours. Sci Rep 9:11698

    PubMed  PubMed Central  Google Scholar 

  48. Gatenby RA, Gillies RJ, Brown JS (2011) Of cancer and cave fish. Nat Rev Cancer 11(4):237

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bergers G, Benjamin LE (2003) Angiogenesis: tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401

    CAS  PubMed  Google Scholar 

  50. Cárdenas-Navia LI, Braun R, Lewis K, Dewhirst MW (2003) Comparison of fluctuations of oxygen tension in FSA, 9L, and R3230AC tumors in rats. In: Oxygen Transport To Tissue XXIII. Springer, pp 7–12

    Google Scholar 

  51. Cárdenas-Navia LI, Yu D, Braun RD, Brizel DM, Secomb TW, Dewhirst MW (2004) Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing. Cancer Res 64(17):6010

    PubMed  Google Scholar 

  52. Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT (2009) Hypoxia and Radiation Therapy: Past History, Ongoing Research, and Future Promise. Curr Mol Med 9(4):442

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cardenas-Navia LI, Richardson RA, Dewhirst MW (2007) Targeting the molecular effects of a hypoxic tumor microenvironment. Front Biosci 12:4061

    CAS  PubMed  Google Scholar 

  54. Julien C (2006) The enigma of Mayer waves: Facts and models. Cardiovasc Res 70(1):12

    CAS  PubMed  Google Scholar 

  55. Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL (1990) Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst 30(2):91

    CAS  PubMed  Google Scholar 

  56. Nash D (1990) Alpha-Adrenergic Blockers: Mechanism of Action, Blood Pressure Control, and Effects on Lipoprotein Metabolism. Clin Cardiol 13(11):764

    CAS  PubMed  Google Scholar 

  57. Chapman N, Chen CY, Fujita T, Hobbs FR, Kim SJ, Staessen JA, Tanomsup S, Wang JG, Williams B (2010) Time to re-appraise the role of alpha-1 adrenoceptor antagonists in the management of hypertension?. J Hypertension 28(9):1796

    CAS  Google Scholar 

  58. Green B (2014) Prazosin in the treatment of PTSD. J Psychiatr Pract 20(4):253

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Milotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milotti, E., Fredrich, T., Chignola, R., Rieger, H. (2020). Oxygen in the Tumor Microenvironment: Mathematical and Numerical Modeling. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1259. Springer, Cham. https://doi.org/10.1007/978-3-030-43093-1_4

Download citation

Publish with us

Policies and ethics