Skip to main content

Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1257))

Abstract

Doxorubicin is an anthracycline and one of the more effective chemotherapy agents used in the treatment of children, adolescents, and adults with osteosarcoma. Despite its effectiveness, cardiotoxicity is a major late effect that compromises the survival and quality of life of survivors of this and other cancers. Cardiotoxicity is the inability of the heart to pump blood through the body effectively. Doxorubicin-induced cardiotoxicity is dose dependent. Additionally, the age of the patients plays a role in susceptibility with younger patients having a greater risk for cardiotoxicity and heart failure years after treatment is complete. The exact mechanism(s) responsible for doxorubicin-induced cardiotoxicity is poorly understood, and further research needs to be done to elucidate the mechanisms. This chapter summarizes the identified mechanisms that may play a role in anthracycline-induced cardiotoxicity. We will also summarize the types of cardiomyopathies that have been described in survivors treated with doxorubicin and the current recommendations for monitoring survivor for the development of cardiomyopathies. Included will be the important search for defining early biomarkers to identify patients and survivors at risk. Finally, we will summarize some of the interventions proposed for decreasing anthracycline-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB (2011) Anthracycline cardiotoxicity: from bench to bedside. NIH Public Access 26(22):3777–3784. https://doi.org/10.1200/JCO.2007.14.9401.Anthracycline

    Article  Google Scholar 

  2. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75. https://doi.org/10.1007/s10557-016-6711-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 1845(1):84–89

    CAS  PubMed  Google Scholar 

  4. Chen SH, Chan N-L, Hsieh T (2013) New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem 82(1):139–170. https://doi.org/10.1146/annurev-biochem-061809-100002

    Article  CAS  PubMed  Google Scholar 

  5. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70(1):369–413

    Article  CAS  PubMed  Google Scholar 

  6. Vejpongsa P, Yeh ETH (2014) Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther 95(1):45–52. https://doi.org/10.1038/clpt.2013.201

    Article  CAS  PubMed  Google Scholar 

  7. Liu B, Li H, Qu H, Sun B (2006) Nitric oxide synthase expressions in ADR-induced cardiomyopathy in rats. BMB Rep 39(6):759–765. https://doi.org/10.5483/bmbrep.2006.39.6.759

    Article  CAS  Google Scholar 

  8. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118. https://doi.org/10.4103/0973-7847.70902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seifried HE, Anderson DE, Sorkin BC, Costello RB (2004) Free radicals: the pros and cons of antioxidants. Executive summary report. J Nutr 134(11):3143S–3163S. https://doi.org/10.1093/jn/134.11.3143S

    Article  CAS  PubMed  Google Scholar 

  11. Vejpongsa P, Yeh ETH (2014) Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 64(9):938–945. https://doi.org/10.1016/j.jacc.2014.06.1167

    Article  CAS  PubMed  Google Scholar 

  12. Cappetta D, Urbanek K, Rossi F, De Angelis A (2018) Anthracycline cardiotoxicity: new actors on the stage. Transl Cancer Res 7(S5):S580–S583. https://doi.org/10.21037/tcr.2018.04.24

    Article  Google Scholar 

  13. Said R, Nickolich M, Lenihan DJ, Tsimberidou AM (2017) Cardiotoxicity of anticancer therapies. Cardio-Oncology: Clin Overlap Cancer Heart Dis 5(February):15–42. https://doi.org/10.1007/978-3-319-43096-6_2

    Article  Google Scholar 

  14. Shaikh AY, Shih JA (2012) Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep 9(2):117–127. https://doi.org/10.1007/s11897-012-0083-y

    Article  CAS  PubMed  Google Scholar 

  15. Bloom MW, Greenberg B, Jaarsma T, Januzzi JL, Lam CSP, Maggioni AP et al (2017) Heart failure with reduced ejection fraction. Nat Rev Dis Primers 3:1–20. https://doi.org/10.1038/nrdp.2017.58

    Article  Google Scholar 

  16. Tan TC, Scherrer-Crosbie M (2012) Assessing the cardiac toxicity of chemotherapeutic agents: role of echocardiography. Curr Cardiovasc Imaging Rep 5(6):403–409. https://doi.org/10.1007/s12410-012-9163-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tan LL, Lyon AR (2018) Role of biomarkers in prediction of cardiotoxicity during cancer treatment. Curr Treat Options Cardiovasc Med 20(7). https://doi.org/10.1007/s11936-018-0641-z

  18. Nicol M, Baudet M, Cohen-solal A (2019) Co-morbidities subclinical left ventricular dysfunction during chemotherapy co-morbidities. Cardiac Failure Review 942:31–36

    Google Scholar 

  19. Moazeni S, Cadeiras M, Yang EH, Deng MC, Nguyen K-L (2017) Anthracycline induced cardiotoxicity: biomarkers and “Omics” technology in the era of patient specific care. Clin Transl Med 6(1). https://doi.org/10.1186/s40169-017-0148-3

  20. Santos DS, Goldenberg RCS (2018) Doxorubicin-induced cardiotoxicity: from mechanisms to development of efficient therapy (Chapter 1). Cardiotoxicity: Intech Open, pp 3–24

    Google Scholar 

  21. Renu K, Abilash VG, Tirupathi Pichiah PB, Arunachalam S (2018) Molecular mechanism of doxorubicin-induced cardiomyopathy – an update. Eur J Pharmacol 818(October 2017):241–253. https://doi.org/10.1016/j.ejphar.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  22. Volkova M, Russell R (2012) Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 7(4):214–220. https://doi.org/10.2174/157340311799960645

    Article  Google Scholar 

  23. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Investig 124(2):617–630. https://doi.org/10.1172/JCI72931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Minotti G, Salvatorelli E, Menna P, Ronchi R, Cairo G (2001) Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Res 61(23):8422–8428

    CAS  PubMed  Google Scholar 

  25. Nebigil CG, Désaubry L (2018) Updates in anthracycline-mediated cardiotoxicity. Front Pharmacol 9(NOV):1–13. https://doi.org/10.3389/fphar.2018.01262

    Article  CAS  Google Scholar 

  26. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52(6):1213–1225. https://doi.org/10.1016/j.yjmcc.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  27. Alkuraishy HM, Al-gareeb AI, Al-hussaniy HA (2017) Doxorubicin-induced cardiotoxicity: molecular mechanism and protection by conventional drugs and natural products. Int J Clin Oncol Cancer Res 2(2):31–44. https://doi.org/10.11648/j.ijcocr.20170202.12

    Article  Google Scholar 

  28. Licata S, Saponiero A, Mordente A, Minotti G (2000) Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 13(5):414–420. https://doi.org/10.1021/tx000013q

    Article  CAS  PubMed  Google Scholar 

  29. Mitry MA, Edwards JG (2016) Doxorubicin induced heart failure: phenotype and molecular mechanisms. IJC Heart Vasc 10:17–24. https://doi.org/10.1016/j.ijcha.2015.11.004

    Article  Google Scholar 

  30. Pecoraro M, Del Pizzo M, Marzocco S, Sorrentino R, Ciccarelli M, Iaccarino G et al (2016) Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol 293:44–52. https://doi.org/10.1016/j.taap.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  31. Langer SW (2014) Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res 6:357–363. https://doi.org/10.2147/CMAR.S47238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ganatra S, Nohria A, Shah S, Groarke JD, Sharma A, Venesy D et al (2019) Upfront dexrazoxane for the reduction of anthracycline-induced cardiotoxicity in adults with preexisting cardiomyopathy and cancer: a consecutive case series. Cardio-Oncology 5(1):1–12. https://doi.org/10.1186/s40959-019-0036-7

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang F, Iskra B, Kleinerman E, Alvarez-florez C, Andrews T, Shaw A et al (2018) Aerobic exercise during early murine doxorubicin exposure mitigates cardiac toxicity. J Pediatr Hematol Oncol 40(3):208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchit Bhagat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagat, A., Kleinerman, E.S. (2020). Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. In: Kleinerman, E.S., Gorlick, R. (eds) Current Advances in Osteosarcoma . Advances in Experimental Medicine and Biology, vol 1257. Springer, Cham. https://doi.org/10.1007/978-3-030-43032-0_15

Download citation

Publish with us

Policies and ethics