Skip to main content

Lasers in Periodontal and Peri-implant Therapy: Challenges and Opportunities

  • Chapter
  • First Online:
Emerging Therapies in Periodontics

Abstract

Lasers are increasingly being applied as a monotherapy or adjunct to surgical and nonsurgical therapy in the treatment of periodontitis and peri-implantitis. Numerous clinical studies evaluating the effectiveness of lasers in periodontal therapy as well as critical and systematic reviews of this research have been reported in the literature. The therapeutic goals of using lasers, or specific laser wavelengths, as a monotherapy or adjunct to traditional therapies, include root surface debridement and detoxification, reduction in specific or overall subgingival bacterial composition, subgingival curettage, suppression of inflammation, biostimulation, and periodontal regeneration. Low-level lasers have been used in conjunction with photosensitizers, such as toluidine blue, which adhere to the bacterial membrane, to induce a photochemical cytotoxic reaction intended to eradicate periodontopathic bacteria (i.e., antimicrobial photodynamic therapy). The conclusions of current systematic reviews are inconsistent, reflecting, in part, inconsistencies in clinical protocols, therapeutic and biological endpoints, procedural heterogeneity, and inadequate description of interventions. Nevertheless, systematic reviews conclude that clinical outcomes of laser treatment are similar or slightly better than reference nonsurgical or surgical therapies; however, any differential benefits remain short term. Moreover, there is limited human histologic evidence that is consistent with the potential for periodontal regeneration following laser-assisted therapy in patients with moderate to severe periodontitis. To capitalize on cellular and molecular changes incurred by laser interactions with hard and soft tissues of the periodontium and peri-implant tissues, laser treatment protocols should be refined to optimize lasers as a tool in our dental armamentarium. There is much promise for improved treatment outcomes with inclusion of dental lasers in the treatment of periodontal and peri-implant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol. 2005;2000(38):135–87.

    Google Scholar 

  2. Heydenrijk K, Meijer HJ, Van Der Reijden WA, Raghoebar GM, Vissink A, Stegenga B. Microbiota around root-form endosseous implants: a review of the literature. Int J Oral Maxillofac Implants. 2002;17:829–38.

    PubMed  Google Scholar 

  3. Perez-Chaparro PJ, Duarte PM, Shibli JA, Montenegro S, Lacerda Heluy S, Figueiredo LC, Faveri M, Feres M. The current weight of evidence of the microbiologic profile associated with peri-implantitis: a systematic review. J Periodontol. 2016;87:1295–304.

    PubMed  Google Scholar 

  4. Zander HA, Polson AM, Heijl LC. Goals of periodontal therapy. J Periodontol. 1976;47:261–6.

    PubMed  Google Scholar 

  5. Khoshkam V, Chan HL, Lin GH, Maceachern MP, Monje A, Suarez F, Giannobile WV, Wang HL. Reconstructive procedures for treating peri-Implantitis: a systematic review. J Dent Res. 2013;92:131s–8s.

    PubMed  PubMed Central  Google Scholar 

  6. Helal O, Gostemeyer G, Krois J, Fawzy El Sayed K, Graetz C, Schwendicke F. Predictors for tooth loss in periodontitis patients: systematic review and meta-analysis. J Clin Periodontol. 2019;46:699–712.

    PubMed  Google Scholar 

  7. Ting M, Craig J, Balkin BE, Suzuki JB. Peri-implantitis: a comprehensive overview of systematic reviews. J Oral Implantol. 2018;44:225–47.

    PubMed  Google Scholar 

  8. Robertson PB. Surgical periodontal therapy: indications, selection and limitations. Int Dent J. 1983;33:137–46.

    PubMed  Google Scholar 

  9. Lee CT, Huang HY, Sun TC, Karimbux N. Impact of patient compliance on tooth loss during supportive periodontal therapy: a systematic review and meta-analysis. J Dent Res. 2015;94:777–86.

    PubMed  Google Scholar 

  10. Weintraub JA, Orleans B, Fontana M, Phillips C, Jones JA. Factors associated with becoming edentulous in the US health and retirement study. J Am Geriatr Soc. 2019;67(11):2318–24.

    PubMed  Google Scholar 

  11. Roccuzzo M, Layton DM, Roccuzzo A, Heitz-Mayfield LJ. Clinical outcomes of peri-implantitis treatment and supportive care: a systematic review. Clin Oral Implants Res. 2018;29(Suppl 16):331–50.

    PubMed  Google Scholar 

  12. Romanos GE, Javed F, Delgado-Ruiz RA, Calvo-Guirado JL. Peri-implant diseases: a review of treatment interventions. Dent Clin N Am. 2015;59:157–78.

    PubMed  Google Scholar 

  13. Peng Q, Juzeniene A, Chen J, Svaasand LO, Warloe T, Giercksky K-E, Moan J. Lasers in medicine. Rep Prog Phys. 2008;71:056701.

    Google Scholar 

  14. Coluzzi DJ. Fundamentals of lasers in dentistry: basic science, tissue interaction, and instrumentation. J Laser Dent. 2008;16:4–10.

    Google Scholar 

  15. Jawad MM, Abdul Qader ST, Zaidan AA, Zaidan BB, Naji AW, Abdul Qader IT. An overview of laser principle, laser-tissue interaction mechanisms and laser safety precautions for medical laser users. Int J Pharmacol. 2011;7:149–60.

    Google Scholar 

  16. Cobb CM. Lasers and the treatment of periodontitis: the essence and the noise. Periodontol. 2017;2000(75):205–95.

    Google Scholar 

  17. Ripamonti U. Soluble osteogenic molecular signals and the induction of bone formation. Biomaterials. 2006;27:807–22.

    PubMed  Google Scholar 

  18. Ripamonti U, Klar RM. Regenerative frontiers in craniofacial reconstruction: grand challenges and opportunities for the mammalian transforming growth factor-beta proteins. Front Physiol. 2010;1:143.

    PubMed  PubMed Central  Google Scholar 

  19. Ripamonti U, Richter PW, Nilen RW, Renton L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus. J Cell Mol Med. 2008;12:2609–21.

    PubMed  PubMed Central  Google Scholar 

  20. Massari L, Benazzo F, Falez F, Perugia D, Pietrogrande L, Setti S, Osti R, Vaienti E, Ruosi C, Cadossi R. Biophysical stimulation of bone and cartilage: state of the art and future perspectives. Int Orthop. 2019;43:539–51.

    PubMed  PubMed Central  Google Scholar 

  21. Yavropoulou MP, Yovos JG. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact. 2016;16:221–36.

    PubMed  PubMed Central  Google Scholar 

  22. Avila R, Tamariz E, Medina-Villalobos N, Andilla J, Marsal M, Loza-Alvarez P. Effects of near infrared focused laser on the fluorescence of labelled cell membrane. Sci Rep. 2018;8:17674.

    PubMed  PubMed Central  Google Scholar 

  23. Kujawa J, Pasternak K, Zavodnik I, Irzmanski R, Wrobel D, Bryszewska M. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation. Lasers Med Sci. 2014;29:1663–8.

    PubMed  Google Scholar 

  24. Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: a systematic review. Prog Biophys Mol Biol. 2019;149:147–59.

    PubMed  Google Scholar 

  25. Emelyanov AN, Kiryanova VV. Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg. 2015;33:164–74.

    PubMed  Google Scholar 

  26. Bayat M, Virdi A, Rezaei F, Chien S. Comparison of the in vitro effects of low-level laser therapy and low-intensity pulsed ultrasound therapy on bony cells and stem cells. Prog Biophys Mol Biol. 2018;133:36–48.

    PubMed  Google Scholar 

  27. Escudero JSB, Perez MGB, De Oliveira Rosso MP, Buchaim DV, Pomini KT, Campos LMG, Audi M, Buchaim RL. Photobiomodulation therapy (PBMT) in bone repair: a systematic review. Injury. 2019;50(11):1853–67.

    PubMed  Google Scholar 

  28. Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol. 1996;23:492–6.

    PubMed  Google Scholar 

  29. Ninomiya T, Hosoya A, Nakamura H, Sano K, Nishisaka T, Ozawa H. Increase of bone volume by a nanosecond pulsed laser irradiation is caused by a decreased osteoclast number and an activated osteoblasts. Bone. 2007;40:140–8.

    PubMed  Google Scholar 

  30. Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I. Effect of low-level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol. 2005;76:187–93.

    PubMed  Google Scholar 

  31. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5:58–62.

    PubMed  PubMed Central  Google Scholar 

  32. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med. 1998;22:212–8.

    PubMed  Google Scholar 

  33. Kim IS, Cho TH, Kim K, Weber FE, Hwang SJ. High power-pulsed Nd:YAG laser as a new stimulus to induce BMP-2 expression in MC3T3-E1 osteoblasts. Lasers Surg Med. 2010;42:510–8.

    PubMed  Google Scholar 

  34. Ogita M, Tsuchida S, Aoki A, Satoh M, Kado S, Sawabe M, Nanbara H, Kobayashi H, Takeuchi Y, Mizutani K, Sasaki Y, Nomura F, Izumi Y. Increased cell proliferation and differential protein expression induced by low-level Er:YAG laser irradiation in human gingival fibroblasts: proteomic analysis. Lasers Med Sci. 2015;30:1855–66.

    PubMed  Google Scholar 

  35. Kim K, Kim IS, Cho TH, Seo YK, Hwang SJ. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models. J Tissue Eng Regen Med. 2015;9:943–51.

    PubMed  Google Scholar 

  36. Ninomiya T, Miyamoto Y, Ito T, Yamashita A, Wakita M, Nishisaka T. High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. J Bone Miner Metab. 2003;21:67–73.

    PubMed  Google Scholar 

  37. Atasoy KT, Korkmaz YT, Odaci E, Hanci H. The efficacy of low-level 940 nm laser therapy with different energy intensities on bone healing. Braz Oral Res. 2017;31:E7.

    PubMed  Google Scholar 

  38. Kazem Shakouri S, Soleimanpour J, Salekzamani Y, Oskuie MR. Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci. 2010;25:73–7.

    PubMed  Google Scholar 

  39. Gosain A, Dipietro LA. Aging and wound healing. World J Surg. 2004;28:321–6.

    PubMed  Google Scholar 

  40. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–29.

    PubMed  PubMed Central  Google Scholar 

  41. Heger M, Salles II, Bezemer R, Cloos MA, Mordon SR, Begu S, Deckmyn H, Beek JF. Laser-induced primary and secondary hemostasis dynamics and mechanisms in relation to selective photothermolysis of port wine stains. J Dermatol Sci. 2011;63:139–47.

    PubMed  Google Scholar 

  42. Lee JH, Chiang MH, Chen PH, Ho ML, Lee HE, Wang YH. Anti-inflammatory effects of low-level laser therapy on human periodontal ligament cells: in vitro study. Lasers Med Sci. 2018;33:469–77.

    PubMed  Google Scholar 

  43. Wu JY, Chen CH, Wang CZ, Ho ML, Yeh ML, Wang YH. Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic amp level and NF-KappaB activity. PLoS One. 2013;8:E54067.

    PubMed  PubMed Central  Google Scholar 

  44. Giannelli M, Bani D, Tani A, Pini A, Margheri M, Zecchi-Orlandini S, Tonelli P, Formigli L. In vitro evaluation of the effects of low-intensity Nd:YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol. 2009;80:977–84.

    PubMed  Google Scholar 

  45. Bortone F, Santos HA, Albertini R, Pesquero JB, Costa MS, Silva JA Jr. Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. Int Immunopharmacol. 2008;8:206–10.

    PubMed  Google Scholar 

  46. Correa F, Lopes Martins RA, Correa JC, Iversen VV, Joenson J, Bjordal JM. Low-level laser therapy (GaAs lambda = 904 nm) reduces inflammatory cell migration in mice with lipopolysaccharide-induced peritonitis. Photomed Laser Surg. 2007;25:245–9.

    PubMed  Google Scholar 

  47. Pires D, Xavier M, Araujo T, Silva JA Jr, Aimbire F, Albertini R. Low-level laser therapy (LLLT; 780 nm) acts differently on mRNA expression of anti- and pro-inflammatory mediators in an experimental model of collagenase-induced tendinitis in rat. Lasers Med Sci. 2011;26:85–94.

    PubMed  Google Scholar 

  48. Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DA, Oliveira JR. Anti-inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med. 2008;40:500–8.

    PubMed  Google Scholar 

  49. Dolgova D, Abakumova T, Gening T, Poludnyakova L, Zolotovskii I, Stoliarov D, Fotiadi A, Khokhlova A, Rafailov E, Sokolovski S. Anti-inflammatory and cell proliferative effect of the 1270 nm laser irradiation on the BALB/c nude mouse model involves activation of the cell antioxidant system. Biomed Opt Express. 2019;10:4261–75.

    PubMed  PubMed Central  Google Scholar 

  50. Gavish L, Perez LS, Reissman P, Gertz SD. Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med. 2008;40:371–8.

    PubMed  Google Scholar 

  51. Sousa LR, Cavalcanti BN, Marques MM. Effect of laser phototherapy on the release of TNF-alpha and MMP-1 by endodontic sealer-stimulated macrophages. Photomed Laser Surg. 2009;27:37–42.

    PubMed  Google Scholar 

  52. Kwon TR, Oh CT, Choi EJ, Kim SR, Jang YJ, Ko EJ, Suh D, Yoo KH, Kim BJ. Ultraviolet light-emitting-diode irradiation inhibits TNF-alpha and IFN-gamma-induced expression of ICAM-1 and STAT1 phosphorylation in human keratinocytes. Lasers Surg Med. 2015;47:824–32.

    PubMed  Google Scholar 

  53. Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci. 2014;5:163–70.

    PubMed  PubMed Central  Google Scholar 

  54. Bayat M, Jalalifirouzkouhi A. Presenting a method to improve bone quality through stimulation of osteoporotic mesenchymal stem cells by low-level laser therapy. Photomed Laser Surg. 2017;35:622–8.

    PubMed  Google Scholar 

  55. Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B. 2016;162:577–82.

    PubMed  Google Scholar 

  56. Ginani F, Soares DM, Barreto MP, Barboza CA. Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci. 2015;30:2189–94.

    PubMed  Google Scholar 

  57. Ginani F, Soares DM, De Oliveira Rocha HA, De Souza LB, Barboza CAG. Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci. 2018;33:95–102.

    PubMed  Google Scholar 

  58. Ren C, Mcgrath C, Jin L, Zhang C, Yang Y. Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies. Lasers Med Sci. 2016;31:1493–510.

    PubMed  Google Scholar 

  59. Shingyochi Y, Kanazawa S, Tajima S, Tanaka R, Mizuno H, Tobita M. A low-level carbon dioxide laser promotes fibroblast proliferation and migration through activation of Akt, ERK, and JNK. PLoS One. 2017;12:E0168937.

    PubMed  PubMed Central  Google Scholar 

  60. Staffoli S, Romeo U, Amorim RNS, Migliau G, Palaia G, Resende L, Polimeni A. The effects of low level laser irradiation on proliferation of human dental pulp: a narrative review. Clin Ter. 2017;168:E320–6.

    PubMed  Google Scholar 

  61. Kimizuka Y, Katagiri W, Locascio JJ, Shigeta A, Sasaki Y, Shibata M, Morse K, Sirbulescu RF, Miyatake M, Reeves P, Suematsu M, Gelfand J, Brauns T, Poznansky MC, Tsukada K, Kashiwagi S. Brief exposure of skin to near-infrared laser modulates mast cell function and augments the immune response. J Immunol. 2018;201:3587–603.

    PubMed  PubMed Central  Google Scholar 

  62. Lopes PP, Todorov G, Pham TT, Nesburn AB, Bahraoui E, Benmohamed L. Laser adjuvant-assisted peptide vaccine promotes skin mobilization of dendritic cells and enhances protective CD8(+) TEM and TRM cell responses against herpesvirus infection and disease. J Virol. 2018;92(8): e02156–17.

    Google Scholar 

  63. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg. 2004;22:323–9.

    PubMed  Google Scholar 

  64. Peplow PV, Chung TY, Baxter GD. Laser Photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg. 2010;28:291–325.

    PubMed  Google Scholar 

  65. Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg. 2004;22:241–7.

    PubMed  Google Scholar 

  66. Gal P, Stausholm MB, Kovac I, Dosedla E, Luczy J, Sabol F, Bjordal JM. Should open excisions and sutured incisions be treated differently? A review and meta-analysis of animal wound models following low-level laser therapy. Lasers Med Sci. 2018;33:1351–62.

    PubMed  Google Scholar 

  67. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg. 2005;31:334–40.

    PubMed  Google Scholar 

  68. Lucas C, Criens-Poublon LJ, Cockrell CT, De Haan RJ. Wound healing in cell studies and animal model experiments by low level laser therapy; were clinical studies justified? A systematic review. Lasers Med Sci. 2002;17:110–34.

    PubMed  Google Scholar 

  69. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40:516–33.

    PubMed  Google Scholar 

  70. Kulkarni S, Meer M, George R. Efficacy of photobiomodulation on accelerating bone healing after tooth extraction: a systematic review. Lasers Med Sci. 2019;34:685–92.

    PubMed  Google Scholar 

  71. Lemes CHJ, Da Rosa WLO, Sonego CL, Lemes BJ, Moraes RR, Da Silva AF. Does laser therapy improve the wound healing process after tooth extraction? A systematic review. Wound Repair Regen. 2019;27:102–13.

    PubMed  Google Scholar 

  72. Niederman R. Are lasers as effective as scaling for chronic periodontitis? Evid Based Dent. 2011;12:80–1.

    PubMed  Google Scholar 

  73. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, Becker J. In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planing on periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med. 2003;32:359–66.

    PubMed  Google Scholar 

  74. Israel M, Cobb CM, Rossmann JA, Spencer P. The effects of CO2, Nd:YAG and Er:YAG lasers with and without surface coolant on tooth root surfaces. An in vitro study. J Clin Periodontol. 1997;24:595–602.

    PubMed  Google Scholar 

  75. Fayad MI, Hawkinson R, Daniel J, Hao J. The effect of CO2 laser irradiation on PDL cell attachment to resected root surfaces. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:518–23.

    PubMed  Google Scholar 

  76. Galli C, Passeri G, Cacchioli A, Gualini G, Ravanetti F, Elezi E, Macaluso GM. Effect of laser-induced dentin modifications on periodontal fibroblasts and osteoblasts: a new in vitro model. J Periodontol. 2009;80:1648–54.

    PubMed  Google Scholar 

  77. Pant V, Dixit J, Agrawal AK, Seth PK, Pant AB. Behavior of human periodontal ligament cells on CO2 laser irradiated dentinal root surfaces: an in vitro study. J Periodontal Res. 2004;39:373–9.

    PubMed  Google Scholar 

  78. Aoki A, Sasaki KM, Watanabe H, Ishikawa I. Lasers in nonsurgical periodontal therapy. Periodontol. 2004;2000(36):59–97.

    Google Scholar 

  79. Eberhard J, Ehlers H, Falk W, Acil Y, Albers HK, Jepsen S. Efficacy of subgingival calculus removal with Er:YAG laser compared to mechanical debridement: an in situ study. J Clin Periodontol. 2003;30:511–8.

    PubMed  Google Scholar 

  80. Schwarz F, Bieling K, Venghaus S, Sculean A, Jepsen S, Becker J. Influence of fluorescence-controlled Er:YAG laser radiation, the vector system and hand instruments on periodontally diseased root surfaces in vivo. J Clin Periodontol. 2006a;33:200–8.

    PubMed  Google Scholar 

  81. Crespi R, Barone A, Covani U. Effect of Er:YAG laser on diseased root surfaces: an in vivo study. J Periodontol. 2005;76:1386–90.

    PubMed  Google Scholar 

  82. Aoki A, Miura M, Akiyama F, Nakagawa N, Tanaka J, Oda S, Watanabe H, Ishikawa I. In vitro evaluation of Er:Yag laser scaling of subgingival calculus in comparison with ultrasonic scaling. J Periodontal Res. 2000;35:266–77.

    PubMed  Google Scholar 

  83. Folwaczny M, George G, Thiele L, Mehl A, Hickel R. Root surface roughness following Er:YAG laser irradiation at different radiation energies and working tip angulations. J Clin Periodontol. 2002;29:598–603.

    PubMed  Google Scholar 

  84. Sasaki KM, Aoki A, Ichinose S, Ishikawa I. Morphological analysis of cementum and root dentin after Er:YAG laser irradiation. Lasers Surg Med. 2002;31:79–85.

    PubMed  Google Scholar 

  85. Gaspirc B, Skaleric U. Morphology, chemical structure and diffusion processes of root surface after Er:YAG and Nd:YAG laser irradiation. J Clin Periodontol. 2001;28:508–16.

    PubMed  Google Scholar 

  86. Agoob Alfergany M, Nasher R, Gutknecht N. Calculus removal and root surface roughness when using the Er:YAG or Er,Cr:YSGG laser compared with conventional instrumentation method: a literature review. Photobiomodul Photomed Laser Surg. 2019;37:197–226.

    PubMed  Google Scholar 

  87. Etemadi A, Sadeghi M, Abbas FM, Razavi F, Aoki A, Azad RF, Chiniforush N. Comparing efficiency and root surface morphology after scaling with Er:YAG and Er,Cr:YSGG lasers. Int J Periodontics Restorative Dent. 2013;33:E140–4.

    PubMed  Google Scholar 

  88. Ting CC, Fukuda M, Watanabe T, Aoki T, Sanaoka A, Noguchi T. Effects of Er,Cr:YSGG laser irradiation on the root surface: morphologic analysis and efficiency of calculus removal. J Periodontol. 2007;78:2156–64.

    PubMed  Google Scholar 

  89. Lavu V, Sundaram S, Sabarish R, Rao SR. Root surface bio-modification with erbium lasers—a myth or a reality?? Open Dent J. 2015;9:79–86.

    PubMed  PubMed Central  Google Scholar 

  90. Kreisler M, Gotz H, Duschner H. Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants. 2002;17:202–11.

    PubMed  Google Scholar 

  91. Tosun E, Tasar F, Strauss R, Kivanc DG, Ungor C. Comparative evaluation of antimicrobial effects of Er:YAG, diode, and CO(2) lasers on titanium discs: an experimental study. J Oral Maxillofac Surg. 2012;70:1064–9.

    PubMed  Google Scholar 

  92. Aoki A, Mizutani K, Schwarz F, Sculean A, Yukna RA, Takasaki AA, Romanos GE, Taniguchi Y, Sasaki KM, Zeredo JL, Koshy G, Coluzzi DJ, White JM, Abiko Y, Ishikawa I, Izumi Y. Periodontal and peri-implant wound healing following laser therapy. Periodontol. 2015;2000(68):217–69.

    Google Scholar 

  93. Kato T, Kusakari H, Hoshino E. Bactericidal efficacy of carbon dioxide laser against bacteria-contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers Surg Med. 1998;23:299–309.

    PubMed  Google Scholar 

  94. Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, Becker J. Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig. 2005;9:111–7.

    PubMed  Google Scholar 

  95. Taniguchi Y, Aoki A, Mizutani K, Takeuchi Y, Ichinose S, Takasaki AA, Schwarz F, Izumi Y. Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants. Lasers Med Sci. 2013;28:1057–68.

    PubMed  Google Scholar 

  96. Schwarz F, Nuesry E, Bieling K, Herten M, Becker J. Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol. 2006b;77:1820–7.

    PubMed  Google Scholar 

  97. Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I. Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg. 2003;21:7–17.

    PubMed  Google Scholar 

  98. Krespi YP, Kizhner V. Laser microbial killing and biofilm disruption. AIP Conf Proc. 2009;1142:75–8.

    Google Scholar 

  99. Krespi YP, Stoodley P, Hall-Stoodley L. Laser disruption of biofilm. Laryngoscope. 2008;118:1168–73.

    PubMed  Google Scholar 

  100. Smith A, Buchinsky FJ, Post JC. Eradicating chronic ear, nose, and throat infections: a systematically conducted literature review of advances in biofilm treatment. Otolaryngol Head Neck Surg. 2011;144:338–47.

    PubMed  Google Scholar 

  101. Taylor ZD, Navarro A, Kealey CP, Beenhouwer D, Haake DA, Grundfest WS, Gupta V. Bacterial biofilm disruption using laser generated shockwaves. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1028–32.

    PubMed  Google Scholar 

  102. Yao W, Kuan EC, Chung YH, Francis NC, St John MA, Taylor ZD, Grundfest WS. In-depth analysis of antibacterial mechanisms of laser generated shockwave treatment. Lasers Surg Med. 2019;51:339–44.

    PubMed  Google Scholar 

  103. Alves E, Faustino MA, Neves MG, Cunha A, Tome J, Almeida A. An insight on bacterial cellular targets of photodynamic inactivation. Future Med Chem. 2014;6:141–64.

    PubMed  Google Scholar 

  104. Sobotta L, Skupin-Mrugalska P, Piskorz J, Mielcarek J. Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur J Med Chem. 2019;175:72–106.

    PubMed  Google Scholar 

  105. Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70:391–475.

    PubMed  Google Scholar 

  106. Akram Z, Al-Shareef SA, Daood U, Asiri FY, Shah AH, Alqahtani MA, Vohra F, Javed F. Bactericidal efficacy of photodynamic therapy against periodontal pathogens in periodontal disease: a systematic review. Photomed Laser Surg. 2016;34:137–49.

    PubMed  Google Scholar 

  107. Chondros P, Nikolidakis D, Christodoulides N, Rossler R, Gutknecht N, Sculean A. Photodynamic therapy as adjunct to non-surgical periodontal treatment in patients on periodontal maintenance: a randomized controlled clinical trial. Lasers Med Sci. 2009;24:681–8.

    PubMed  Google Scholar 

  108. Gandhi KK, Pavaskar R, Cappetta EG, Drew HJ. Effectiveness of adjunctive use of low-level laser therapy and photodynamic therapy after scaling and root planing in patients with chronic periodontitis. Int J Periodontics Restorative Dent. 2019;39:837–43.

    PubMed  Google Scholar 

  109. Akram Z, Hyder T, Al-Hamoudi N, Binshabaib MS, Alharthi SS, Hanif A. Efficacy of photodynamic therapy versus antibiotics as an adjunct to scaling and root planing in the treatment of periodontitis: a systematic review and meta-analysis. Photodiagn Photodyn Ther. 2017;19:86–92.

    Google Scholar 

  110. Alasqah MN. Antimicrobial efficacy of photodynamic therapy on dental implant surfaces: a systematic review of in vitro studies. Photodiagn Photodyn Ther. 2019;25:349–53.

    Google Scholar 

  111. Widodo A, Spratt D, Sousa V, Petrie A, Donos N. An in vitro study on disinfection of titanium surfaces. Clin Oral Implants Res. 2016;27:1227–32.

    PubMed  Google Scholar 

  112. Kikuchi T, Mogi M, Okabe I, Okada K, Goto H, Sasaki Y, Fujimura T, Fukuda M, Mitani A. Adjunctive application of antimicrobial photodynamic therapy in nonsurgical periodontal treatment: a review of literature. Int J Mol Sci. 2015;16:24111–26.

    PubMed  PubMed Central  Google Scholar 

  113. Miyabe M, Junqueira JC, Costa AC, Jorge AO, Ribeiro MS, Feist IS. Effect of photodynamic therapy on clinical isolates of Staphylococcus spp. Braz Oral Res. 2011;25:230–4.

    PubMed  Google Scholar 

  114. Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci. 2011;26:341–8.

    PubMed  Google Scholar 

  115. Vilela SF, Junqueira JC, Barbosa JO, Majewski M, Munin E, Jorge AO. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study. Arch Oral Biol. 2012;57:704–10.

    PubMed  Google Scholar 

  116. Zanin IC, Goncalves RB, Junior AB, Hope CK, Pratten J. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother. 2005;56:324–30.

    PubMed  Google Scholar 

  117. Huang TC, Chen CJ, Chen CC, Ding SJ. Enhancing osteoblast functions on biofilm-contaminated titanium alloy by concentration-dependent use of methylene blue-mediated antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther. 2019;27:7–18.

    PubMed  Google Scholar 

  118. Yao JJ, Lewallen EA, Trousdale WH, Xu W, Thaler R, Salib CG, Reina N, Abdel MP, Lewallen DG, Van Wijnen AJ. Local cellular responses to titanium dioxide from orthopedic implants. Biores Open Access. 2017;6:94–103.

    PubMed  PubMed Central  Google Scholar 

  119. Kim KT, Eo MY, Nguyen TTH, Kim SM. General review of titanium toxicity. Int J Implant Dent. 2019;5:10.

    PubMed  PubMed Central  Google Scholar 

  120. Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res. 2018;29(Suppl 18):37–53.

    PubMed  Google Scholar 

  121. Olmedo D, Tasat D, Duffo G, Guglielmotti M, Cabrini R. The issue of corrosion in dental implants: a review. Acta Odontol Latinoam. 2009;22:3–9.

    PubMed  Google Scholar 

  122. Revathi A, Borras AD, Munoz AI, Richard C, Manivasagam G. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Mater Sci Eng C Mater Biol Appl. 2017;76:1354–68.

    PubMed  Google Scholar 

  123. Rosen PS, Froum SH, Froum SJ. A rationale for post-surgical laser use to effectively treat dental implants affected by peri-implantitis: 2 case reports. Int J Periodontics Restorative Dent. In Press.

    Google Scholar 

  124. Chambrone L, Ramos UD, Reynolds MA. Infrared lasers for the treatment of moderate to severe periodontitis: an American Academy of Periodontology best evidence review. J Periodontol. 2018a;89:743–65.

    PubMed  Google Scholar 

  125. Caruso U, Nastri L, Piccolomini R, D'ercole S, Mazza C, Guida L. Use of diode laser 980 nm as adjunctive therapy in the treatment of chronic periodontitis. A randomized controlled clinical trial. New Microbiol. 2008;31:513–8.

    PubMed  Google Scholar 

  126. Derdilopoulou FV, Nonhoff J, Neumann K, Kielbassa AM. Microbiological findings after periodontal therapy using curettes, Er:YAG laser, sonic, and ultrasonic scalers. J Clin Periodontol. 2007;34:588–98.

    PubMed  Google Scholar 

  127. Euzebio Alves VT, De Andrade AK, Toaliar JM, Conde MC, Zezell DM, Cai S, Pannuti CM, De Micheli G. Clinical and microbiological evaluation of high intensity diode laser adjutant to non-surgical periodontal treatment: a 6-month clinical trial. Clin Oral Investig. 2013;17:87–95.

    PubMed  Google Scholar 

  128. Lopes BM, Theodoro LH, Melo RF, Thompson GM, Marcantonio RA. Clinical and microbiologic follow-up evaluations after non-surgical periodontal treatment with erbium:YAG laser and scaling and root planing. J Periodontol. 2010;81:682–91.

    PubMed  Google Scholar 

  129. Zhao Y, Yin Y, Tao L, Nie P, Tang Y, Zhu M. Er:YAG laser versus scaling and root planing as alternative or adjuvant for chronic periodontitis treatment: a systematic review. J Clin Periodontol. 2014;41:1069–79.

    PubMed  Google Scholar 

  130. Ma L, Zhang X, Ma Z, Shi H, Zhang Y, Wu M, Cui W. Clinical effectiveness of Er: YAG lasers adjunct to scaling and root planing in non-surgical treatment of chronic periodontitis: a meta-analysis of randomized controlled trials. Med Sci Monit. 2018;24:7090–9.

    PubMed  PubMed Central  Google Scholar 

  131. Smiley CJ, Tracy SL, Abt E, Michalowicz BS, John MT, Gunsolley J, Cobb CM, Rossmann J, Harrel SK, Forrest JL, Hujoel PP, Noraian KW, Greenwell H, Frantsve-Hawley J, Estrich C, Hanson N. Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J Am Dent Assoc. 2015b;146:508–24.e5.

    PubMed  Google Scholar 

  132. Smiley CJ, Tracy SL, Abt E, Michalowicz BS, John MT, Gunsolley J, Cobb CM, Rossmann J, Harrel SK, Forrest JL, Hujoel PP, Noraian KW, Greenwell H, Frantsve-Hawley J, Estrich C, Hanson N. Evidence-based clinical practice guideline on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J Am Dent Assoc. 2015a;146:525–35.

    PubMed  Google Scholar 

  133. Litch JM, O’leary TJ, Kafrawy AH. Pocket epithelium removal via crestal and subcrestal scalloped internal bevel incisions. J Periodontol. 1984;55:142–8.

    PubMed  Google Scholar 

  134. Yukna RA, Bowers GM, Lawrence JJ, Fedi PF Jr. A clinical study of healing in humans following the excisional new attachment procedure. J Periodontol. 1976;47:696–700.

    PubMed  Google Scholar 

  135. Hill RW, Ramfjord SP, Morrison EC, Appleberry EA, Caffesse RG, Kerry GJ, Nissle RR. Four types of periodontal treatment compared over two years. J Periodontol. 1981;52:655–62.

    PubMed  Google Scholar 

  136. Ramfjord SP, Caffesse RG, Morrison EC, Hill RW, Kerry GJ, Appleberry EA, Nissle RR, Stults DL. Four modalities of periodontal treatment compared over five years. J Periodontal Res. 1987;22:222–3.

    PubMed  Google Scholar 

  137. Centty IG, Blank LW, Levy BA, Romberg E, Barnes DM. Carbon dioxide laser for de-epithelialization of periodontal flaps. J Periodontol. 1997;68:763–9.

    PubMed  Google Scholar 

  138. Lin J, Bi L, Wang L, Song Y, Ma W, Jensen S, Cao D. Gingival curettage study comparing a laser treatment to hand instruments. Lasers Med Sci. 2011;26:7–11.

    PubMed  Google Scholar 

  139. Rossmann JA, Mcquade MJ, Turunen DE. Retardation of epithelial migration in monkeys using a carbon dioxide laser: an animal study. J Periodontol. 1992;63:902–7.

    PubMed  Google Scholar 

  140. Israel M, Rossmann JA, Froum SJ. Use of the carbon dioxide laser in retarding epithelial migration: a pilot histological human study utilizing case reports. J Periodontol. 1995;66:197–204.

    PubMed  Google Scholar 

  141. Gaspirc B, Skaleric U. Clinical evaluation of periodontal surgical treatment with an Er:YAG laser: 5-year results. J Periodontol. 2007;78:1864–71.

    PubMed  Google Scholar 

  142. Gokhale SR, Padhye AM, Byakod G, Jain SA, Padbidri V, Shivaswamy S. A comparative evaluation of the efficacy of diode laser as an adjunct to mechanical debridement versus conventional mechanical debridement in periodontal flap surgery: a clinical and microbiological study. Photomed Laser Surg. 2012;30:598–603.

    PubMed  Google Scholar 

  143. Lobo TM, Pol DG. Evaluation of the use of a 940 nm diode laser as an adjunct in flap surgery for treatment of chronic periodontitis. J Indian Soc Periodontol. 2015;19:43–8.

    PubMed  PubMed Central  Google Scholar 

  144. Sculean A, Schwarz F, Berakdar M, Romanos GE, Arweiler NB, Becker J. Periodontal treatment with an Er:YAG laser compared to ultrasonic instrumentation: a pilot study. J Periodontol. 2004;75:966–73.

    PubMed  Google Scholar 

  145. Behdin S, Monje A, Lin GH, Edwards B, Othman A, Wang HL. Effectiveness of laser application for periodontal surgical therapy: systematic review and meta-analysis. J Periodontol. 2015;86:1352–63.

    PubMed  Google Scholar 

  146. Crespi R, Cappare P, Gherlone E, Romanos GE. Comparison of modified widman and coronally advanced flap surgery combined with CO2 laser root irradiation in periodontal therapy: a 15-year follow-up. Int J Periodontics Restorative Dent. 2011;31:641–51.

    PubMed  Google Scholar 

  147. Nevins ML, Camelo M, Schupbach P, Kim SW, Kim DM, Nevins M. Human clinical and histologic evaluation of laser-assisted new attachment procedure. Int J Periodontics Restorative Dent. 2012;32:497–507.

    PubMed  Google Scholar 

  148. Shimono M, Ishikawa T, Enokiya Y, Muramatsu T, Matsuzaka K, Inoue T, Abiko Y, Yamaza T, Kido MA, Tanaka T, Hashimoto S. Biological characteristics of the junctional epithelium. J Electron Microsc. 2003;52:627–39.

    Google Scholar 

  149. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: bone replacement grafts. Dent Clin N Am. 2010;54:55–71.

    PubMed  Google Scholar 

  150. Avila-Ortiz G, De Buitrago JG, Reddy MS. Periodontal regeneration—furcation defects: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86:S108–30.

    PubMed  Google Scholar 

  151. Kao RT, Nares S, Reynolds MA. Periodontal regeneration—intrabony defects: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86:S77–104.

    PubMed  Google Scholar 

  152. Bowers GM, Chadroff B, Carnevale R, Mellonig J, Corio R, Emerson J, Stevens M, Romberg E. Histologic evaluation of new attachment apparatus formation in humans. Part III. J Periodontol. 1989;60:683–93.

    PubMed  Google Scholar 

  153. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol. 2003;8:227–65.

    PubMed  Google Scholar 

  154. Carmagnola D, Tarce M, Dellavia C, Rimondini L, Varoni EM. Engineered scaffolds and cell-based therapy for periodontal regeneration. J Appl Biomater Funct Mater. 2017;15:E303–12.

    PubMed  Google Scholar 

  155. Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, Oates TW, Chang X, Xu HHK. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells. 2019;8:537.

    Google Scholar 

  156. Lin Z, Rios HF, Cochran DL. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP regeneration workshop. J Periodontol. 2015;86:S134–52.

    PubMed  Google Scholar 

  157. Yukna RA, Carr RL, Evans GH. Histologic evaluation of an Nd:YAG laser-assisted new attachment procedure in humans. Int J Periodontics Restorative Dent. 2007;27:577–87.

    PubMed  Google Scholar 

  158. Taniguchi Y, Aoki A, Sakai K, Mizutani K, Meinzer W, Izumi Y. A Novel Surgical Procedure for Er:YAG Laser-Assisted Periodontal Regenerative Therapy: Case Series. Int J Periodontics Restorative Dent. 2016;36:507–15.

    Google Scholar 

  159. Renvert S, Hirooka H, Polyzois I, Kelekis-Cholakis A, Wang HL, Working G. Diagnosis and non-surgical treatment of peri-implant diseases and maintenance care of patients with dental implants—consensus report of working group 3. Int Dent J. 2019;69(Suppl 2):12–7.

    PubMed  Google Scholar 

  160. Froum SJ, Gonzalez De La Torre E, Rosen PS. Peri-implant mucositis. Int J Periodontics Restorative Dent. 2019;39:E46–57.

    PubMed  Google Scholar 

  161. Lin GH, Suarez Lopez Del Amo F, Wang HL. Laser therapy for treatment of peri-implant mucositis and peri-implantitis: an American Academy of Periodontology best evidence review. J Periodontol. 2018;89:766–82.

    PubMed  Google Scholar 

  162. Chambrone L, Wang HL, Romanos GE. Antimicrobial photodynamic therapy for the treatment of periodontitis and peri-Implantitis: an American Academy of Periodontology best evidence review. J Periodontol. 2018b;89:783–803.

    PubMed  Google Scholar 

  163. Romeo U, Nardi GM, Libotte F, Sabatini S, Palaia G, Grassi FR. The antimicrobial photodynamic therapy in the treatment of peri-implantitis. Int J Dent. 2016;2016:7692387.

    PubMed  PubMed Central  Google Scholar 

  164. Sivaramakrishnan G, Sridharan K. Photodynamic therapy for the treatment of peri-implant diseases: a network meta-analysis of randomized controlled trials. Photodiagn Photodyn Ther. 2018;21:1–9.

    Google Scholar 

  165. De Bartolo AM, Veitz-Keenan A. Inconclusive evidence of treatment modalities for peri-implantitis. Evid Based Dent. 2019;20:24–5.

    PubMed  Google Scholar 

  166. Ramanauskaite A, Daugela P, Juodzbalys G. Treatment of peri-implantitis: meta-analysis of findings in a systematic literature review and novel protocol proposal. Quintessence Int. 2016;47:379–93.

    PubMed  Google Scholar 

  167. Romanos GE, Nentwig GH. Regenerative therapy of deep peri-implant infrabony defects after CO2 laser implant surface decontamination. Int J Periodontics Restorative Dent. 2008;28:245–55.

    PubMed  Google Scholar 

  168. Schwendicke F, Tu YK, Stolpe M. Preventing and treating peri-implantitis: a cost-effectiveness analysis. J Periodontol. 2015;86:1020–9.

    PubMed  Google Scholar 

  169. Clem D, Gunsolley JC. Peri-implantitis treatment using Er:Yag laser and bone grafting. A prospective consecutive case series evaluation: 1 year posttherapy. Int J Periodontics Restorative Dent. 2019;39:479–89.

    PubMed  Google Scholar 

  170. Harris D, Nicholson D, Mccarthy D, Yukna R, Reynolds M, Greenwell H, Finley J, Mccawley T, Xenoudi P, Gregg R. Change in clinical indices following laser or scalpel treatment for periodontitis: a split-mouth, randomized, multi-center trial. In: Progress in biomedical optics and imaging—proceedings of SPIE, vol. 8929; 2014.

    Google Scholar 

  171. Mills MP, Rosen PS, Chambrone L, Greenwell H, Kao RT, Klokkevold PR, Mcallister BS, Reynolds MA, Romanos GE, Wang HL. American Academy of Periodontology best evidence consensus statement on the efficacy of laser therapy used alone or as an adjunct to non-surgical and surgical treatment of periodontitis and peri-implant diseases. J Periodontol. 2018;89:737–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reynolds, M.A., Aichelmann-Reidy, M.E., Rosen, P.S. (2020). Lasers in Periodontal and Peri-implant Therapy: Challenges and Opportunities. In: Sahingur, S. (eds) Emerging Therapies in Periodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-42990-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42990-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42989-8

  • Online ISBN: 978-3-030-42990-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics