Skip to main content

The Role of Advanced Imaging in Spinal Metastases

  • Chapter
  • First Online:
  • 742 Accesses

Abstract

Accurate diagnosis and assessment of spinal metastases are of critical importance for cancer patients because the spine is the most common site for skeletal metastases. Conventional imaging methods such as bone scan, positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT) are commonly utilized for diagnosing and monitoring treatment of spinal metastases. However, differential diagnoses and treatment response monitoring currently remain difficult with these methods. The development of advanced imaging techniques offers promising advantages to conventional methods through considerations of diffusion, perfusion, and other tumor microenvironment characteristics. These advanced imaging techniques include dynamic contrast-enhanced MRI (DCE MRI), which shows great potential for improving the management of spinal metastases by assessing tumor vascularity, as well as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), dual-energy CT, and CT myelography. This chapter will discuss how these techniques can be specifically utilized throughout a patient’s treatment timeline to enhance clinical care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Perrin RG. Metastatic tumors of the axial spine. Curr Opin Oncol. 1992;4(3):525–32.

    Article  CAS  PubMed  Google Scholar 

  2. Solomou E, Kazantzi A, Romanos O, Kardamakis D. Magnetic resonance imaging of metastatic bone disease. In: Kardamakis D, Vassiliou V, Chow E, editors. Bone metastases: a translational and clinical approach. Dordrecht: Springer; 2009. p. 163–81.

    Chapter  Google Scholar 

  3. Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging: JMRI. 1997;7(2):394–8.

    Article  CAS  PubMed  Google Scholar 

  4. Breger RK, Williams AL, Daniels DL, Czervionke LF, Mark LP, Haughton VM, et al. Contrast enhancement in spinal MR imaging. AJR Am J Roentgenol. 1989;153(2):387–91.

    Article  CAS  PubMed  Google Scholar 

  5. Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology. 1993;188(1):249–52.

    Article  CAS  PubMed  Google Scholar 

  6. Mirowitz SA, Apicella P, Reinus WR, Hammerman AM. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol. 1994;162(1):215–21.

    Article  CAS  PubMed  Google Scholar 

  7. Moulopoulos LA, Maris TG, Papanikolaou N, Panagi G, Vlahos L, Dimopoulos MA. Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging. Ann Oncol. 2003;14(1):152–8.

    Article  CAS  PubMed  Google Scholar 

  8. Gaudino S, Martucci M, Colantonio R, Lozupone E, Visconti E, Leone A, et al. A systematic approach to vertebral hemangioma. Skelet Radiol. 2015;44(1):25–36.

    Article  Google Scholar 

  9. O’Sullivan GJ, Carty FL, Cronin CG. Imaging of bone metastasis: an update. World J Radiol. 2015;7(8):202–11.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Otake S, Mayr NA, Ueda T, Magnotta VA, Yuh WTC. Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field? Radiology. 2002;222(1):179–83.

    Article  PubMed  Google Scholar 

  11. Yankelevitz DF, Henschke CI, Knapp PH, Nisce L, Yi Y, Cahill P. Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. AJR Am J Roentgenol. 1991;157(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  12. Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology. 2003;229(3):703–9.

    Article  PubMed  Google Scholar 

  13. Maccauro G, Spinelli MS, Mauro S, Perisano C, Graci C, Rosa MA. Physiopathology of spine metastasis. Int J Surg Oncol. 2011;2011:107969.

    PubMed  PubMed Central  Google Scholar 

  14. Arevalo-Perez J, Peck K, Young R, Holodny A, Karimi S, Lyo J. Dynamic contrast- enhanced perfusion MRI and diffusion-weighted imaging in grading of gliomas. J Neuroimaging. 2015;25(5):792–8.

    Article  PubMed  Google Scholar 

  15. Thomas AA, Arevalo-Perez J, Kaley T, Lyo J, Peck KK, Shi W, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neuro-Oncol. 2015;125(1):183–90.

    Article  Google Scholar 

  16. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. American Journal of Neuroradiology. 2009;30(2):367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hatzoglou V, Ulaner GA, Zhang Z, Beal K, Holodny AI, Young RJ. Comparison of the effectiveness of MRI perfusion and Fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor. Clin Imaging. 2013;37(3):451–7.

    Article  PubMed  Google Scholar 

  18. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging: JMRI. 1999;10(3):223–32.

    Article  CAS  PubMed  Google Scholar 

  19. Khadem NR, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, et al. Characterizing hypervascular and hypovascular metastases and normal bone marrow of the spine using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2012;33(11):2178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen WT, Shih TT, Chen RC, Lo HY, Chou CT, Lee JM, et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging: JMRI. 2002;15(3):308–14.

    Article  PubMed  Google Scholar 

  21. Saranathan M, Rettmann DW, Hargreaves BA, Clarke SE, Vasanawala SS. Differential subsampling with Cartesian ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging. 2012;35(6):1484–92.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saha A, Peck KK, Lis E, Holodny AI, Yamada Y, Karimi S. Magnetic resonance perfusion characteristics of hypervascular renal and hypovascular prostate spinal metastases: clinical utilities and implications. Spine. 2014;39(24):E1433–40.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mazura JC, Karimi S, Pauliah M, Banihashemi MA, Gobin YP, Bilsky MH, et al. Dynamic contrast-enhanced magnetic resonance perfusion compared with digital subtraction angiography for the evaluation of extradural spinal metastases: a pilot study. Spine. 2014;39(16):E950–4.

    Article  PubMed  Google Scholar 

  24. Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics: a review publication of the Radiological Society of North America, Inc. 2003;23(1):179–87.

    Article  Google Scholar 

  25. Croarkin E. Osteopenia in the patient with cancer. Phys Ther. 1999;79(2):196–201.

    Article  CAS  PubMed  Google Scholar 

  26. Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-Deene Y, Kunnen M, Bloem JL. Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging: JMRI. 1996;6(2):311–21.

    Article  CAS  PubMed  Google Scholar 

  27. Arevalo-Perez J, Peck KK, Lyo JK, Holodny AI, Lis E, Karimi S. Differentiating benign from malignant vertebral fractures using T1 -weighted dynamic contrast-enhanced MRI. J Magn Reson Imaging: JMRI. 2015;42(4):1039–47.

    Article  PubMed  Google Scholar 

  28. Morales KA, Arevalo-Perez J. Differentiating atypical hemangiomas and metastatic vertebral lesions: the role of T1-weighted dynamic contrast-enhanced MRI. AJNR Am J Neuroradiol. 2018;39(5):968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lis E, Saha A, Peck KK, Zatcky J, Zelefsky MJ, Yamada Y, et al. Dynamic contrast- enhanced magnetic resonance imaging of osseous spine metastasis before and 1 hour after high- dose image-guided radiation therapy. Neurosurg Focus. 2017;42(1):E9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chu S, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, et al. Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging: evaluation of tumor response to radiation therapy. Spine. 2013;38(22):E1418–24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kumar KA, Peck KK, Karimi S, Lis E, Holodny AI, Bilsky MH, et al. A pilot study evaluating the use of dynamic contrast-enhanced perfusion MRI to predict local recurrence after radiosurgery on spinal metastases. Technol Cancer Res Treat. 2017;1533034617705715

    Google Scholar 

  33. Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012;13(2):e69–76.

    Article  PubMed  Google Scholar 

  34. Lang N, Su MY, Xing X, Yu HJ, Yuan H. Morphological and dynamic contrast enhanced MR imaging features for the differentiation of chordoma and giant cell tumors in the axial skeleton. J Magn Reson Imaging: JMRI. 2017;45(4):1068–75.

    Article  PubMed  Google Scholar 

  35. Santos P, Peck KK. T1-weighted dynamic contrast-enhanced MR perfusion imaging characterizes tumor response to radiation therapy in chordoma. AJNR Am J Neuroradiol. 2017;38(11):2210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White NS, McDonald C, Farid N, Kuperman J, Karow D, Schenker-Ahmed NM, et al. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014;74(17):4638–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8(35):59492–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Khoo MM, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skelet Radiol. 2011;40(6):665–81.

    Article  Google Scholar 

  39. Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol. 2018;28(7):2890–902.

    Article  PubMed  Google Scholar 

  40. Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225(3):889–94.

    Article  PubMed  Google Scholar 

  41. Pozzi G, Albano D. Solid bone tumors of the spine: diagnostic performance of apparent diffusion coefficient measured using diffusion-weighted MRI using histology as a reference standard. J Magn Reson Imaging: JMRI. 2018;47(4):1034–42.

    Article  PubMed  Google Scholar 

  42. Pozzi G, Garcia Parra C, Stradiotti P, Tien TV, Luzzati A, Zerbi A. Diffusion-weighted MR imaging in differentiation between osteoporotic and neoplastic vertebral fractures. Eur Spine J. 2012;21(Suppl 1):S123–7.

    Article  PubMed  Google Scholar 

  43. Shi YJ, Li XT, Zhang XY, Liu YL, Tang L, Sun YS. Differential diagnosis of hemangiomas from spinal osteolytic metastases using 3.0 T MRI: comparison of T1-weighted imaging, chemical-shift imaging, diffusion-weighted and contrast-enhanced imaging. Oncotarget. 2017;8(41):71095–104.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23(6):906–12.

    PubMed  PubMed Central  Google Scholar 

  45. Cappabianca S, Capasso R, Urraro F, Izzo A, Raucci A, Di Franco R, et al. Assessing response to radiation therapy treatment of bone metastases: short-term followup of radiation therapy treatment of bone metastases with diffusion-weighted magnetic resonance imaging. Journal of Radiotherapy. 2014;2014:8.

    Article  Google Scholar 

  46. Reischauer C, Froehlich JM, Koh DM, Graf N, Padevit C, John H, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps--initial observations. Radiology. 2010;257(2):523–31.

    Article  PubMed  Google Scholar 

  47. Dale BM, Braithwaite AC, Boll DT, Merkle EM. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Investig Radiol. 2010;45(2):104–8.

    Article  Google Scholar 

  48. Hackländer T, Scharwächter C, Golz R, Mertens H. Value of diffusion-weighted imaging for diagnosing vertebral metastases due to prostate cancer in comparison to other primary tumors. Rofo. 2006;178(4):416–24.

    Article  PubMed  Google Scholar 

  49. Oztekin O, Ozan E, Hilal Adibelli Z, Unal G, Abali Y. SSH-EPI diffusion-weighted MR imaging of the spine with low b values: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Skelet Radiol. 2009;38(7):651–8.

    Article  Google Scholar 

  50. Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics: a review publication of the Radiological Society of North America, Inc. 2014;34(5):1163–77.

    Article  Google Scholar 

  51. Castillo M, Arbelaez A, Smith JK, Fisher LL. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol. 2000;21(5):948–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21(10):2169–77.

    Article  CAS  PubMed  Google Scholar 

  53. Egger K, Hohenhaus M, Van Velthoven V, Heil S, Urbach H. Spinal diffusion tensor tractography for differentiation of intramedullary tumor-suspected lesions. Eur J Radiol. 2016;85(12):2275–80.

    Article  CAS  PubMed  Google Scholar 

  54. Choudhri AF, Whitehead MT, Klimo P Jr, Montgomery BK, Boop FA. Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology. 2014;56(2):169–74.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Keřkovský M, Zitterbartová J, Pour L, Šprláková-Puková A, Mechl M. Diffusion tensor imaging in radiation-induced myelopathy. J Neuroimaging. 2014;25(5):836–40.

    Article  PubMed  Google Scholar 

  56. Crombe A, Alberti N, Hiba B, Uettwiller M, Dousset V, Tourdias T. Cervical spinal cord DTI is improved by reduced FOV with specific balance between the number of diffusion gradient directions and averages. Am J Neuroradiol. 2016;37(11):2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sudha SP, Gopalakrishnan MS, Saravanan K. The role of CT myelography in sparing the spinal cord during definitive radiotherapy in vertebral hemangioma. J Appl Clin Med Phys. 2017;18(5):174–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wolman DN, Patel BP, Wintermark M, Heit JJ. Dual-energy computed tomography applications in neurointervention. J Comput Assist Tomogr. 2018;42:831.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karimi, S., Cho, N.S., Peck, K.K., Holodny, A.I. (2020). The Role of Advanced Imaging in Spinal Metastases. In: Ramakrishna, R., Magge, R., Baaj, A., Knisely, J. (eds) Central Nervous System Metastases. Springer, Cham. https://doi.org/10.1007/978-3-030-42958-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42958-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42957-7

  • Online ISBN: 978-3-030-42958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics