Skip to main content

Wakes and Instabilities of Static and Freely Vibrating Cylinders

  • Conference paper
  • First Online:
  • 927 Accesses

Part of the book series: ERCOFTAC Series ((ERCO,volume 27))

Abstract

The flow around static and freely vibrating cylinders are of interest in understanding different phenomena encountered in many practical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roshko, A.: Perspectives on bluff body aerodynamics. J. Wind. Eng. Ind. Aerodyn. 49(1), 79–100 (1993)

    Article  Google Scholar 

  2. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28(1), 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  3. Zdravkovich, M.: Flow around circular cylinders. Volume I: Fundamental. J. Fluid Mech. 350(1), 375–378 (1997)

    Google Scholar 

  4. Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10(3), 345–356 (1961)

    Article  Google Scholar 

  5. Bearman, P.W.: On vortex shedding from a circular cylinder in the critical Reynolds number regime. J. Fluid Mech. 37, 577–585 (1969)

    Article  Google Scholar 

  6. Achenbach, E., Heinecke, E.: On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6e3 to 5e6. J. Fluid Mech. 109, 239–251 (1981)

    Article  Google Scholar 

  7. Lehmkuhl, O., Rodríguez, I., Borrell, R., Chiva, J., Oliva, A.: Unsteady forces on a circular cylinder at critical Reynolds numbers. Phys. Fluids 26(12), 125110 (2014)

    Article  Google Scholar 

  8. Lienhard, J.: Synopsis of lift, drag and cortex shedding frequency data for rigid circular cylinders. Tech. Rep. Bulletin 300, College of Engineering. Research Division (1966)

    Google Scholar 

  9. Shih, W., Wang, C., Coles, D., Roshko, A.: Experiments on flow past rough circular cylinders at large Reynolds numbers. J. Wind. Eng. Ind. Aerodyn. 49, 351–368 (1993)

    Article  Google Scholar 

  10. Achenbach, E.: Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5e6. J. Fluid Mech. 34, 625–639 (1968)

    Article  Google Scholar 

  11. Schewe, G.: On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983)

    Article  Google Scholar 

  12. Rodríguez, I., Lehmkuhl, O., Chiva, J., Borrell, R., Oliva, A.: On the flow past a circular cylinder from critical to super-critical Reynolds numbers: wake topology and vortex shedding. Int. J. Heat Fluid Flow 55, 91–103 (2015)

    Article  Google Scholar 

  13. Lehmkuhl, O., Rodríguez, I., Borrell, R., Oliva, A.: Low-frequency unsteadiness in the vortex formation region of a circular cylinder. Phys. Fluids 25, 085109 (2013)

    Article  Google Scholar 

  14. Aljure, D., Lehmkhul, O., Rodríguez, I., Oliva, A.: Three dimensionality in the wake of the flow around a circular cylinder at Reynolds number 5000. Comput. Fluids 147, 102–118 (2017)

    Article  MathSciNet  Google Scholar 

  15. Delany, N., Sorensen, N.: Low-speed drag of cylinders of various shapes. Tech. Rep., NACA (1953)

    Google Scholar 

  16. Spitzer, R.: Measurements of unsteady pressures and wake fluctuations for flow over a cylinder at supercritical Reynolds number. Ph.D. thesis, California Institute of Technology (1965)

    Google Scholar 

  17. Bursnall, W., Loftin, L.J.: Experimental investigation of the pressure distribution about a yawed circular cylinder in the critical Reynolds number range. Tech. rep., NACA (1951)

    Google Scholar 

  18. Vaz, G., Mabilat, C., van der Wal, R., Gallagher, P.: Viscous flow computations on smooth cylinders: a detailed numerical study with validation. In: 26th International Conference on Offshore Mechanics and Artic Engineering. OMAE2007, San Diego, California (2007)

    Google Scholar 

  19. Wieselsberger, C.: New data on the laws of fluid resistance. Tech. Rep. TN 84, NACA (1921)

    Google Scholar 

  20. Fage, A.: Drag of circular cylinders and spheres. Tech. Rep., Aeronautical Research Council (1930)

    Google Scholar 

  21. Sarpkaya, T.: Vortex-induced oscillations: a selective review. J. Appl. Mech. 46, 241–258 (1979)

    Article  Google Scholar 

  22. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)

    Article  Google Scholar 

  23. Williamson, C.H.K., Govardhan, R.: A brief review of recent results in vortex-induced vibrations. J. Wind. Eng. Ind. Aerodyn. 96, 713–735 (2008)

    Article  Google Scholar 

  24. Bearman, P.W.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5–6), 648–658 (2011)

    Article  Google Scholar 

  25. Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Arís, R., Mira, D., Calmet, H., Cucchietti, F., Owen, H., Taha, A., Burness, E.D., Cela, J.M., Valero, M.: Alya: multiphysics engineering simulation towards exascale. J. Comput. Sci. 14, 15–27 (2016)

    Article  MathSciNet  Google Scholar 

  26. Lehmkuhl, O., Houzeaux, G., Owen, H., Chrysokentis, G., Rodriguez, I.: A low-dissipation finite element scheme for scale resolving simulations of turbulent flows. J. Comput. Phys. 390, 51–65 (2019)

    Article  MathSciNet  Google Scholar 

  27. Cajas, J., Houzeaux, G., Vázquez, M., García, M., Casoni, E., Calmet, H., Artigues, A., Borrell, R., Lehmkuhl, O., Pastrana, D., Yáñez, D., Pons, R., Martorell, J.: Fluid-structure interaction based on HPC multicode coupling. SIAM J. Sci. Comput. 40(6), C677–C703 (2018)

    Article  MathSciNet  Google Scholar 

  28. Pastrana, D., Cajas, J.C., Lehmkuhl, O., Rodríguez, I., Houzeaux, G.: Large-eddy simulations of the vortex-induced vibration of a low mass ratio two-degree-of-freedom circular cylinder at subcritical Reynolds numbers. Comput. Fluids 173, 118–132 (2018)

    Article  MathSciNet  Google Scholar 

  29. Jauvtis, N., Williamson, C.H.K.: The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 23–62 (2004)

    Article  Google Scholar 

  30. Gsell, S., Bourguet, R., Braza, M.: Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re=3900. J. Fluids Struct. 67, 156–172 (2016)

    Article  Google Scholar 

  31. Williamson, C.H.K., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2(4), 355–381 (1988)

    Article  Google Scholar 

  32. Williamson, C., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  Google Scholar 

  33. Honji, H.: Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 107, 509–520 (1981)

    Article  Google Scholar 

  34. Sarpkaya, T.: Experiments on the stability of sinusoidal flow over a circular cylinder. J. Fluid Mech. 457, 157–180 (2002)

    Article  Google Scholar 

  35. Aljure, D.E., Rodríguez, I., Lehmkuhl, O., Pérez-Segarra, C.D., Oliva, A.: Influence of rotation on the flow over a cylinder at Re = 5000. Int. J. Heat Fluid Flow 55, 76–90 (2015)

    Article  Google Scholar 

  36. D’Adamo, J., Godoy-Diana, R., Wesfreid, J.E.: Centrifugal instability of Stokes layers in crossflow: the case of a forced cylinder wake. Proc. R. Soc. Lond. A Math. Phys. Sci. 471(2178), 20150011 (2015)

    Google Scholar 

Download references

Acknowledgements

This work has been partially financially supported by the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (Ref. TRA2017-88508-R). We also acknowledge Red Española de Surpercomputación (RES) for awarding us access to the MareNostrum IV machine based in Barcelona, Spain (Ref. FI-2017-2-0016) and PRACE for awarding us access to SuperMUC (Project ViValdi Ref. 2017174222). D. Pastrana acknowledges support of the CONACyT-SENER graduate fellowship program to study abroad 278102/439162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez, I., Lehmkuhl, O., Pastrana, D., Cajas, J.C., Houzeaux, G. (2020). Wakes and Instabilities of Static and Freely Vibrating Cylinders. In: García-Villalba, M., Kuerten, H., Salvetti, M. (eds) Direct and Large Eddy Simulation XII. DLES 2019. ERCOFTAC Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-42822-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42822-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42821-1

  • Online ISBN: 978-3-030-42822-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics