Skip to main content

Molecular Imaging in Oncology: Advanced Microscopy Techniques

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

Preclinical studies usually require high levels of morphological, functional, and biochemical information at subcellular resolution. This type of information cannot be obtained from clinical imaging techniques, such as MRI, PET/CT, or US. Luckily, many microscopy techniques exist that can offer this information, also for malignant tissues and therapeutic approaches. In this overview, we discuss the various advanced optical microscopy techniques and their applications in oncological research. After a short introduction in Sect. 16.1, we continue in Sect. 16.2 with a discussion on fluorescent labelling strategies, followed in Sect. 16.3 by an in-depth description of confocal, light-sheet, two-photon, and super-resolution microscopy. We end in Sect. 16.4 with a focus on the applications, specifically in oncology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Orlova A et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348

    CAS  PubMed  Google Scholar 

  2. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    CAS  PubMed  Google Scholar 

  3. Keppler A et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    CAS  PubMed  Google Scholar 

  4. Liss V, Barlag B, Nietschke M, Hensel M (2015) Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy. Sci Rep 5

    Google Scholar 

  5. Chozinski TJ, Gagnon LA, Vaughan JC (2014) Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett 588:3603–3612

    CAS  PubMed  Google Scholar 

  6. Van De Linde S et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    PubMed  Google Scholar 

  7. Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. https://doi.org/10.1007/978-0-387-45524-2

  8. Dobbs J et al (2015) Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies. Breast Cancer Res Treat 149:303–310

    CAS  PubMed  Google Scholar 

  9. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E. HK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Google Scholar 

  10. Method of the Year 2014 (2014) Nat Methods 12:1

    Google Scholar 

  11. Keller PJ, Dodt HU (2012) Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22:138–143

    CAS  PubMed  Google Scholar 

  12. Chen BC et al (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346

    Google Scholar 

  13. Liu TL et al (2018) Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science. https://doi.org/10.1126/science.aaq1392

  14. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Google Scholar 

  15. Masters BR, So PTC, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 72:2405–2412

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    CAS  PubMed  Google Scholar 

  17. Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Perry SW, Burke RM, Brown EB (2012) Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 40:277–291

    PubMed  PubMed Central  Google Scholar 

  19. Liu J (2015) Two-photon microscopy in pre-clinical and clinical cancer research. Front Optoelectron 8:141–151

    Google Scholar 

  20. Condeelis J, Weissleder R (2010) In vivo imaging in cancer. Cold Spring Harbor Perspect Biol 2

    Google Scholar 

  21. Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metas 26:357–370

    CAS  Google Scholar 

  22. Konig K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104

    CAS  PubMed  Google Scholar 

  23. Wang BG, Konig K, Halbhuber KJ (2010) Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc 238:1–20

    CAS  PubMed  Google Scholar 

  24. Staughton TJ, McGillicuddy CJ, Weinberg PD (2001) Techniques for reducing the interfering effects of autofluorescence in fluorescence microscopy: improved detection of sulphorhodamine B-labelled albumin in arterial tissue. J Microsc 201:70–76

    CAS  PubMed  Google Scholar 

  25. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    CAS  PubMed  Google Scholar 

  26. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Google Scholar 

  27. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    CAS  PubMed  Google Scholar 

  29. Heintzmann R, Huser T (2017) Super-resolution structured illumination microscopy. Chem Rev 117:13890–13908

    CAS  PubMed  Google Scholar 

  30. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A 19:1599

    Google Scholar 

  31. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci 102:13081–13086

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vermeulen L et al (2013) Defining stem cell dynamics in models of intestinal tumor initiation. Science 342:995–998

    Google Scholar 

  33. Denais CM et al (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358

    Google Scholar 

  34. Shimokawa M et al (2017) Visualization and targeting of LGR5 + human colon cancer stem cells. Nature 545:187–192

    CAS  PubMed  Google Scholar 

  35. Que S (2015) Non-invasive imaging technologies for the delineation of basal cell carcinomas. J Invest Dermatol 135:S32

    Google Scholar 

  36. Que SKT (2015) Research techniques made simple: noninvasive imaging technologies for the delineation of basal cell carcinomas. J Investig Dermatol 136:e33–e38

    Google Scholar 

  37. Schiffhauer LM et al (2009) Confocal microscopy of unfixed breast needle core biopsies: a comparison to fixed and stained sections. BMC Cancer 9

    Google Scholar 

  38. Tanaka N et al (2017) Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat Biomed Eng 1:796–806

    CAS  PubMed  Google Scholar 

  39. Uhlén P, Tanaka N (2018) Improved pathological examination of tumors with 3D light-sheet microscopy. Trends Cancer 4:337–341

    PubMed  Google Scholar 

  40. Glaser AK et al (2017) Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat Biomed Eng 1

    Google Scholar 

  41. Matsui T et al (2017) Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions. Sci Rep 7

    Google Scholar 

  42. Cicchi R et al (2010) Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ. Opt Express 18:3840–3849

    CAS  PubMed  Google Scholar 

  43. Wu X et al (2013) Label-free detection of breast masses using multiphoton microscopy. PLoS One 8

    Google Scholar 

  44. Skala MC et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104:19494–19499

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ostrander JH et al (2010) Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res 70:4759–4766

    CAS  PubMed  Google Scholar 

  46. Liu Z et al (2018) Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv 4

    Google Scholar 

  47. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Alhallak K et al (2016) Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Clin Oncol 34:2303–2311

    Google Scholar 

  49. Patalay R et al (2011) Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels. Biomed Opt Express 2:3295–3308

    PubMed  PubMed Central  Google Scholar 

  50. Stringari C, Nourse JL, Flanagan LA, Gratton E (2012) Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS ONE. https://doi.org/10.1371/journal.pone.0048014

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stuntz E et al (2017) Endogenous two-photon excited fluorescence imaging characterizes neuron and astrocyte metabolic responses to manganese toxicity/631/378/1689/364/639/624/1111/55/14/69/14/63/123 article. Sci Rep. https://doi.org/10.1038/s41598-017-01015-9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pouli D et al (2016) Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Sci Transl Med 8

    Google Scholar 

  53. So P, Kim H, Kochevar I (1998) Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Opt Express 3:339–350

    CAS  PubMed  Google Scholar 

  54. Konig K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:432–439

    PubMed  Google Scholar 

  55. König K, Konig K (2008) Clinical multiphoton tomography. J Biophotonics 1:13–23

    PubMed  Google Scholar 

  56. Breunig HG, Studier H, Konig K (2010) Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. Opt Express 18:7857–7871

    CAS  PubMed  Google Scholar 

  57. König K et al (2007) Clinical two-photon microendoscopy. Microsc Res Tech 70:398–402

    PubMed  Google Scholar 

  58. Balu M, Mikami H, Hou J, Potma EO, Tromberg BJ (2016) Rapid mesoscale multiphoton microscopy of human skin. Biomed Opt Express 7:4375

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Heuke S et al (2013) Detection and discrimination of non-melanoma skin cancer by multimodal imaging. Healthcare 1:64–83

    PubMed  PubMed Central  Google Scholar 

  60. Balu M et al (2015) In vivo multiphoton microscopy of basal cell carcinoma. JAMA Dermatol 151:1068–1074

    PubMed  PubMed Central  Google Scholar 

  61. Cicchi R et al (2007) Multidimensional non-linear laser imaging of basal cell carcinoma. Opt Express 15:10135

    CAS  PubMed  Google Scholar 

  62. Patalay R et al (2012) Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas. PLoS One 7

    Google Scholar 

  63. Seidenari S et al (2013) Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PLoS One 8:e70682

    Google Scholar 

  64. Flesken-Nikitin A, Williams RM, Zipfel WR, Webb WW, Nikitin AY (2004) Use of multiphoton imaging for studying cell migration in the mouse. Methods Mol Biol 294(335–46):335–346

    Google Scholar 

  65. Sano T et al (2016) Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP. Physiol Rep 4

    Google Scholar 

  66. Wu Z et al (2017) Multi-photon microscopy in cardiovascular research. Methods 130:79–89

    CAS  PubMed  Google Scholar 

  67. Kolesnikov M, Farache J, Shakhar G (2015) Intravital two-photon imaging of the gastrointestinal tract. J Immunol Methods 421:73–80

    CAS  PubMed  Google Scholar 

  68. Wyckoff J, Gligorijevic B, Entenberg D, Segall J, Condeelis J (2011) High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb Protoc 6:1167–1184

    Google Scholar 

  69. Drew PJ et al (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sawinski J et al (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci 106:19557–19562

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Megens RTA et al (2010) In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy. J Biomed Opt 15:11108

    Google Scholar 

  72. Bewersdorf J, Pick R, Hell SW (1998) Multifocal multiphoton microscopy. Opt Lett 23:655

    CAS  PubMed  Google Scholar 

  73. Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M (2007) The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J 93:2519–2529

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kirkpatrick N et al (2012) Video-rate resonant scanning multiphoton microscopy: an emerging technique for intravital imaging of the tumor microenvironment. IntraVital 1:60–68

    Google Scholar 

  75. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    CAS  PubMed  Google Scholar 

  76. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    CAS  PubMed  Google Scholar 

  77. Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154

    CAS  PubMed  Google Scholar 

  78. Dondossola E et al (2018) Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci Transl Med 10

    Google Scholar 

  79. Ilina O et al (2018) Intravital microscopy of collective invasion plasticity in breast cancer. Dis Model Mech 11

    Google Scholar 

  80. Patsialou A et al (2013) Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. IntraVital 2:e25294

    PubMed  Google Scholar 

  81. Le Dévédec SE et al (2011) Two-photon intravital multicolour imaging to study metastatic behaviour of cancer cells in vivo. Methods Mol Biol. https://doi.org/10.1007/978-1-61779-207-6_22

    Article  PubMed  Google Scholar 

  82. Koga S et al (2014) In vivo subcellular imaging of tumors in mouse models using a fluorophore-conjugated anti-carcinoembryonic antigen antibody in two-photon excitation microscopy. Cancer Sci 105:1299–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Thomas G et al (2014) In vivo nonlinear spectral imaging as a tool to monitor early spectroscopic and metabolic changes in a murine cutaneous squamous cell carcinoma model. Biomed Opt Express 5:4281

    PubMed  PubMed Central  Google Scholar 

  84. Kantelhardt SR et al (2016) In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue. J Neurooncol 127:473–482

    CAS  PubMed  Google Scholar 

  85. Lunt SJ, Gray C, Reyes-Aldasoro CC, Matcher SJ, Tozer GM (2010) Application of intravital microscopy in studies of tumor microcirculation. J Biomed Opt 15:011113

    PubMed  Google Scholar 

  86. Bentolila NY, Barnhill RL, Lugassy C, Bentolila LA (2018) Intravital imaging of human melanoma cells in the mouse ear skin by two-photon excitation microscopy. In: Damoiseaux R, Hasson S (eds) BT—reporter gene assays: methods and protocols. Springer, New York, pp 223–232. https://doi.org/10.1007/978-1-4939-7724-6_15

  87. Alexander S, Weigelin B, Winkler F, Friedl P (2013) Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 25:659–671

    CAS  PubMed  Google Scholar 

  88. Beerling E, Ritsma L, Vrisekoop N, Derksen PWB, van Rheenen J (2011) Intravital microscopy: new insights into metastasis of tumors. J Cell Sci 124:299–310

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7:654–669

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4

    Google Scholar 

  91. Tilbury K, Campagnola PJ (2015) Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect Med Chem 7:21–32

    Google Scholar 

  92. Horton NG et al (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7:205–209

    CAS  PubMed Central  Google Scholar 

  93. Weigelin B, Bakker G-J, Friedl P (2012) Intravital third harmonic generation microscopy of collective melanoma cell invasion. IntraVital 1:32–43

    PubMed  Google Scholar 

  94. You S et al (2018) Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat Commun 9

    Google Scholar 

  95. Wang T et al (2018) Three-photon imaging of mouse brain structure and function through the intact skull. Nat Methods 15:789–792

    PubMed  PubMed Central  Google Scholar 

  96. Guesmi K et al (2018) Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light Sci Appl 7

    Google Scholar 

  97. Hwang JY et al (2011) Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications. Biomed Opt Express 2:356

    PubMed  PubMed Central  Google Scholar 

  98. Cheng L-C et al (2012) Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning. Opt Express 20:8939

    PubMed  Google Scholar 

  99. Rowlands CJ et al (2017) Wide-field three-photon excitation in biological samples. Light Sci Appl 6

    Google Scholar 

  100. Ducourthial G et al (2015) Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal. Sci Rep 5

    Google Scholar 

  101. Liang W, Hall G, Messerschmidt B, Li MJ, Li X (2017) Nonlinear optical endomicroscopy for label-free functional histology in vivo. Light Sci Appl 6

    Google Scholar 

  102. Kundrat MJ, Reinhall PG, Lee CM, Seibel EJ (2011) High performance open loop control of scanning with a small cylindrical cantilever beam. J Sound Vib 330:1762–1771

    PubMed  PubMed Central  Google Scholar 

  103. Zhao Y, Nakamura H, Gordon RJ (2010) Development of a versatile two-photon endoscope for biological imaging. Biomed Opt Express 1:1159

    PubMed  PubMed Central  Google Scholar 

  104. Blom H, Widengren J (2017) Stimulated emission depletion microscopy. Chem Rev 117:7377–7427

    CAS  PubMed  Google Scholar 

  105. Sharma S et al (2012) Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine Nanotechnol Biol Med. https://doi.org/10.1016/j.nano.2011.09.015

  106. Ilgen P et al (2014) STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue. PLoS One 9

    Google Scholar 

  107. Rönnlund D, Gad AKB, Blom H, Aspenström P, Widengren J (2013) Spatial organization of proteins in metastasizing cells. Cytom Part A 83:855–865

    Google Scholar 

  108. Rathje L-SZ et al (2014) Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness. Proc Natl Acad Sci 111:1515–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Creech MK, Wang J, Nan X, Gibbs SL (2017) Superresolution imaging of clinical formalin fixed paraffin embedded breast cancer with single molecule localization microscopy. Sci Rep 7

    Google Scholar 

  110. Wang M et al (2015) High-resolution rapid diagnostic imaging of whole prostate biopsies using video-rate fluorescence structured illumination microscopy. Cancer Res 75:4032–4041

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang J, Xu Y, Boppart SA (2017) Review of optical coherence tomography in oncology. J Biomed Opt 22:1

    PubMed  Google Scholar 

  112. Iftimia N et al (2017) Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins. J Biomed Opt 22:076006

    PubMed Central  Google Scholar 

  113. Lee M et al (2015) In vivo imaging of the tumor and its associated microenvironment using combined CARS/2-photon microscopy. IntraVital 4:e1055430

    PubMed  PubMed Central  Google Scholar 

  114. Andresen, V. et al. High-Resolution Intravital Microscopy. PLoS One 7, (2012)

    Google Scholar 

  115. York AG et al (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9:749–754

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ingaramo M et al (2014) Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc Natl Acad Sci 111:5254–5259

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tserevelakis GJ, Soliman D, Omar M, Ntziachristos V (2014) Hybrid multiphoton and optoacoustic microscope. Opt Lett 39:1819

    PubMed  Google Scholar 

  118. Kellnberger S et al (2018) Optoacoustic microscopy at multiple discrete frequencies. Light Sci Appl 7:109

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. M. J. van Zandvoort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapsokalyvas, D., van Zandvoort, M.A.M.J. (2020). Molecular Imaging in Oncology: Advanced Microscopy Techniques. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics