Skip to main content

Processing Stratigraphical Archives

  • Chapter
  • First Online:
Book cover The Geohistorical Approach

Part of the book series: Springer Geography ((SPRINGERGEOGR))

  • 525 Accesses

Abstract

Written documents, maps, paintings, and other types of historical sources are often used in association with many types of geohistorical sources, such as those from sediments and archaeological and biological remains. These kinds of data sources are the objects of study in specific disciplinary sectors such as earth science, archaeology, and biology; these sources often require deeper knowledge in specific fields such as pedology, geoarchaeology, climatology, palynology, and paleobotany. This chapter provides a review of methods to investigate stratigraphical records. These methods are often used together in the reconstruction of past environments; they can also be used to corroborate or validate results from other sources of data, such as written documents or historical maps. The description of each method includes the tools and structures necessary for its application as well as short examples from the international context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the other techniques, see, for example, Veeken (2006), Kelly and Thomas (2014), and Campana and Piro (2008).

  2. 2.

    http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base.

  3. 3.

    https://www.nrcs.usda.gov/wps/portal/nrcs/soilsurvey/soils/survey/state/.

  4. 4.

    Soil Survey Geographic Database.

  5. 5.

    Natural Resources Conservation Service.

  6. 6.

    http://www.arpa.veneto.it/temi-ambientali/suolo/conoscenza-dei-suoli/carte-1-50.000/carta-dei-suoli-della-provincia-di-venezia.

  7. 7.

    The part of a stamen that produces and contains pollen.

  8. 8.

    https://www.biodiversitylibrary.org/bibliography/904#/summary.

References

  • Adams, A., & Mac Kenzie, I. R. (1998). Carbonate sediments and rocks under the microscope: A colour atlas. London: Manson Publishing.

    Book  Google Scholar 

  • Agashe, S. N., & Caulton, E. (2019). Pollen and spores: Applications with special emphasis on aerobiology and allergy. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Aitken, M. J. (2013). Science-based dating in archaeology. London: Routledge.

    Google Scholar 

  • Andersen, S. T. (1970). The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Danmarks Geologiske Undersoegelse, 2(96), 1–99.

    Google Scholar 

  • Anthony, E. J., Marriner, N., & Morhange, C. (2014). Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth-Science Reviews, 139, 336–361.

    Article  Google Scholar 

  • Beltrame, C., Mozzi, P., Forti, A., Maritan, M., Rucco, A. A., Vavasori, A., et al. (2019). The Fifth-Century AD Riverine Barge of Santa Maria in Padovetere (Ferrara, Italy): A multidisciplinary approach to its environment and ship building techniques. Environmental Archaeology. https://doi.org/10.1080/14614103.2019.1586084

  • Beug, H. J. (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Birks, J. J. B., & Gordon, A. D. (1985). Numerical methods in quaternary pollen analysis. London: Academic Press.

    Google Scholar 

  • Booth, T. (2017). The rot sets. In: Low-powered microscopic investigation of taphonomic changes to bone microstructure and its application to funerary contexts. In D. Errickson & T. Thompson (Eds.), Human remains: Another dimension (pp. 7–28). London: Academic Press. https://doi.org/10.1016/B978-0-12-804602-9.00003-5

    Chapter  Google Scholar 

  • Braconnot, H. (1829). Über sporopollenenine. Annales de Chimie Physique, 2, 42–57.

    Google Scholar 

  • Brewer, R. (1964). Fabric and mineral analysis of soils. New York: Wiley.

    Google Scholar 

  • Brewer, R. (1972). The basis of interpretation of soil micromorphological data. Geoderma, 8, 81–94.

    Article  Google Scholar 

  • Brewer, R. (1974). Some considerations concerning micromorphological terminology. In G. K. Rutherford (Ed.), Soil microscopy. Limestone: Kingston.

    Google Scholar 

  • Briner, J. P. (2011). Dating glacial landforms. In V. Singh, P. Singh, & U. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 175–185). New York: Geology Faculty Publications.

    Chapter  Google Scholar 

  • Brown, A. (1997). Alluvial geoarchaeology: Floodplain archaeology and environmental change (Cambridge manuals in archaeology). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511607820

    Book  Google Scholar 

  • Bryant Jr., V. M., Jones, J. G., & Mildenhall, D. C. (1990). Forensic palynology in the United States of America. Palynology, 14, 193–208.

    Article  Google Scholar 

  • Bullock, P., Federoff, N., Jonquerius, A., Stoops, G., & Tusina, T. (1985). Handbook for soil thin section description. Albrighton: Waine Research Publications.

    Google Scholar 

  • Butzer, K. W. (1982). Archaeology as human ecology: Method and theory for a contextual approach. New York: Cambridge University Press.

    Book  Google Scholar 

  • Campana, S. (2017). Drones in archaeology. State-of-the-art and future perspectives. Archaeological Prospection, 24(4), 275–296.

    Article  Google Scholar 

  • Campana, S., & Piro, S. (Eds.). (2008). Seeing the unseen. Geophysics and landscape archaeology. New York: CRC Press.

    Google Scholar 

  • Carter, S. P., & Davidson, D. A. (1998). An evaluation of the contribution of soil micromorphology to the study of ancient arable agriculture. Geoarchaeology, 13, 535–547. https://doi.org/10.1002/(SICI)1520-6548(199808)13:6<535::AID-GEA1>3.0.CO;2-#

    Article  Google Scholar 

  • Celant, A., Magri, D., & Romana Stasolla, F. (2015). Collection of plant remains from archaeological contexts. In E. C. T. Yeung, C. Stasolla, M. J. Sumner, & B. Q. Huang (Eds.), Plant microtechniques and protocols (pp. 469–486). Cham: Springer. https://doi.org/10.1007/978-3-319-19944-3_25

    Chapter  Google Scholar 

  • Cook, E. J., van Geel, B., van der Kaars, S., & van Arkel, J. (2011). A review of the use of non-pollen palynomorphs in palaeoecology with examples from Australia. Palynology, 35(2), 155–178. https://doi.org/10.1080/01916122.2010.545515

    Article  Google Scholar 

  • Cook, E. R., & Kairiukstis, L. A. (Eds.). (1990). Methods of dendrochronology: Applications in the environmental sciences. Dordrecth: Springer.

    Google Scholar 

  • Courty, M. A. (1992). Soil micromorphology in archaeology. Proceedings of the British Academy, 11, 39–59.

    Google Scholar 

  • Courty, M. A., Goldberg, P., & Macphail, R. (1989). Soils and micromorphology in archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cugny, C., Mazier, F., & Galop, D. (2010). Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): The use of coprophilous fungi to reconstruct pastoral activity. Vegetation History and Archaeobotany, 19(5–6), 391–408.

    Article  Google Scholar 

  • Davidson, D. A., Carter, S. P., & Quine, T. A. (1992). An evaluation of micromorphology as an aid to archaeological interpretation. Geoarchaeology, 7(1), 55–65.

    Article  Google Scholar 

  • Davis, M. B. (1963). On the theory of pollen analysis. American Journal of Science, 261, 897–912.

    Article  Google Scholar 

  • Davis, M. B. (1969). Palynology and environmental history during the quaternary period. American Scientist, 57, 317–332.

    Google Scholar 

  • Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40, 695–707.

    Google Scholar 

  • Dickinson, W. R., & Rich, E. I. (1972). Petrologic intervals and petrofacies in the Great Valley sequence, Sacramento Valley, California. GSA Bulletin, 83(10), 3007–3024. https://doi.org/10.1130/0016-7606(1972)83[3007,PIAPIT]2.0.CO;2

    Article  Google Scholar 

  • Ducker, S., & Knox, R. (1985). Pollen and pollination: A historical review. Taxon, 34(3), 401–419. https://doi.org/10.2307/1221207

    Article  Google Scholar 

  • Eidt, R. C. (1977). Detection and examination of anthrosols by phosphate analysis. Science, 197, 1327–1333.

    Article  Google Scholar 

  • Eidt, R. C. (1984). Advances in abandoned settlement analysis. Milwaukee, WI: Cent. Lat. Am., Univ. Wisc.

    Google Scholar 

  • Eidt, R. C. (1985). Theoretical and practical considerations in the analysis of anthrosols. In G. Rapp & J. Gifford (Eds.), Archaeological geology (pp. 155–190). New Haven, CT: Yale University Press.

    Google Scholar 

  • Erdtman, G. (1943). An introduction to pollen analysis. Waltham: Chronica Botanica Company.

    Google Scholar 

  • Erdtman, G. (1969). Handbook of palynology - an introduction to the study of pollen grains and spores. Copenhagen: Munksgaard.

    Google Scholar 

  • Erdtman, G. (1986). Pollen morphology and plant taxonomy: Angiosperms. Leiden: E.J. Brill.

    Google Scholar 

  • Erdtman, G., & Straka, H. (1961). Cormophyte spore classification. Geologiska Föreningen i Stockholm Förhandlingar, 83(1), 65–78. https://doi.org/10.1080/11035896109449582

    Article  Google Scholar 

  • Fægri, K., & Iversen, J. (1989). In K. Fægri, P. E. Kaland, & K. Krzywinski (Eds.), Textbook of pollen analysis (4th ed.). New York: Wiley.

    Google Scholar 

  • Firbas, F. (1935). Die Vegetationsentwicklung des mitteleuropaischen Spatglazials. In Bibliotheca Botanica (p. 112). Göttingen: Vandenhoeck & Ruprech.

    Google Scholar 

  • Firbas, F. (1937). Der pollen analytische Nachweis des Getreidebaus. Z. Botan., 31, 447–479.

    Google Scholar 

  • Fuller, D. Q., & Lucas, L. (2014). Archaeobotany. In C. Smith (Ed.), Encyclopedia of global archaeology. New York: Springer.

    Google Scholar 

  • Garrison, E. (2003). Techniques in archaeological geology. Berlin: Springer.

    Book  Google Scholar 

  • Gazzi, P. (1966). Le arenarie del flysch sopracretaceo dell’Appennino modenese: Correlazioni con il Flysch di Monghidoro. Mineralogica Petrografica Acta, 12, 69–97.

    Google Scholar 

  • Gazzi, P., Zuffa, G. G., Gandolfi, G., & Paganelli, L. (1973). Provenienza e dispersione litoranea delle sabbie delle spiagge adriatiche fra le foci dell’Isonzo e del Foglia: Inquadramento regionale. Memorie della Societa Geologica Italiana, 12, 1–37.

    Google Scholar 

  • Goldberg, P. (1992). Micromorphology, soils and archaeological sites. In V. T. Holliday (Ed.), Soils in archaeology: Landscape evolution and human occupation. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Goldberg, P. (2000). Micromorphology and site formation at Die Kelders cave I, South Africa. Journal of Human Evolution, 38(1), 43–90.

    Article  Google Scholar 

  • Goldberg, P., & Mac Phail, R. I. (2006). Practical and theoretical geoarchaeology. Malden, MA: Blackwell Publishing.

    Google Scholar 

  • Grew, N. (1682). The anatomy of plants, with an idea of a philosophical history of plants, and several other lectures, read before the Royal Society. London: W. Rawlins.

    Google Scholar 

  • Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse, M., et al. (2018). Illustrated pollen terminology. Cham: Springer. https://doi.org/10.1007/978-3-319-71365-6

    Book  Google Scholar 

  • Hastorf, C. (1999). Recent research in paleoethnobotany. Journal of Archaeological Research, 7, 55–103. https://doi.org/10.1023/A:1022178530892

    Article  Google Scholar 

  • Hesse, M., Halbritter, H., Weber, M., Buchner, R., Frosch-Radivo, A., Ulrich, S., et al. (2009). Pollen terminology: An illustrated handbook. Vienna: Springer.

    Google Scholar 

  • Hooke, R. (1665). Micrographia, or, some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. London: Jo. Martyn and Ja. Allestry.

    Book  Google Scholar 

  • Hyde, H. A., & Williams, D. A. (1944). The right word. Pollen Analysis Circular, 8, 6.

    Google Scholar 

  • Ingersoll, R. V. (1990). Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks. Geology, 18(8), 733–736.

    Article  Google Scholar 

  • Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54, 103–116.

    Google Scholar 

  • Ingersoll, R. V., Kretchmer, A. G., & Valles, P. K. (1993). The effect of sampling scale on actualistic sandstone petrofacies. Sedimentology, 40(5), 937–953.

    Article  Google Scholar 

  • Ingham, J. P. (2011). Petrography of geomaterials: A review. Quarterly Journal of Engineering Geology and Hydrogeology, 44(4), 457–467.

    Article  Google Scholar 

  • Itkin, D., Goldfus, H., & Monger, H. C. (2016). Human induced calcretisation in anthropogenic soils and sediments: Field observations and micromorphology in a Mediterranean climatic zone, Israel. Catena, 146, 48–61. https://doi.org/10.1016/j.catena.2016.06.025

    Article  Google Scholar 

  • Jacoby, G. C. (2000). Dendrochronology. Quaternary Geochronology: Methods and Applications, 4, 11–20.

    Google Scholar 

  • Jansonius, J., & McGregor, D. C. (Eds.). (1996). Palynology: Volume 1, 2 and 3. Salt Lake City, UT: American Association of Stratigraphic Palynologists Foundation/Publishers Press.

    Google Scholar 

  • John, J. F. (1814). Über Befruchtenstaube nebst eine analyse des Tulpen pollens. Journal für Chemie und Physik, 12, 244–261.

    Google Scholar 

  • Johnson, W. C., & Fredlund, G. G. (1985). A procedure for extracting palynomorphs (Pollen and Spores) from clastic sediments. Transactions of the Kansas Academy of Science, 88(1/2), 51–58.

    Article  Google Scholar 

  • Jones, G. D., Bryant, V. M., Jr., Lieux, M. H., Jones, S. D., & Lingren, P. D. (1995). Pollen of the southeastern United States: With emphasis on melissopalynology and entomopalynology. Houston: AASP Contributions Series, 30.

    Google Scholar 

  • Karkanas, P., & Goldberg, P. (2018). Reconstructing archaeological sites: Understanding the geoarchaeological matrix. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Kelly, R. L. & Thomas, D. H. (2014). Archaeology: Down to Earth. Wardsworth Cengage Learning.

    Google Scholar 

  • Kooyman, B. (2015). Phytoliths: Preparation and archaeological extraction. In E. C. T. Yeung, C. Stasolla, M. J. Sumner, & B. Q. Huang (Eds.), Plant microtechniques and protocols (pp. 507–524). https://doi.org/10.1007/978-3-319-19944-3_28

    Chapter  Google Scholar 

  • Kremp, G. O. W. (1965). Morphologic Encyclopedia of Palynology. An international collection of definitions and illustrations of spores and pollen. Tucson, AZ: The University of Arizona Press.

    Google Scholar 

  • Krzywinski, K., Fægri, K., Iversen, J., & Kaland, P. E. (2000). Textbook of pollen analysis. Caldwell, NJ: The Blackburn Press.

    Google Scholar 

  • Kubiena, W. (1938). Micropedology. Ames, IA: Collegiate Press.

    Google Scholar 

  • Kumari, M., Singh Sankhla, M., Nandan, M., Sharma, K., & Kumar, R. (2017). Role of forensic palynology in crime investigation. IJournals: International Journal of Social Relevance & Concern, 5(3), 1–13.

    Google Scholar 

  • Laine, A., Gauthier, E., Garcia, J. P., Petit, C., Cruz, F., & Richard, H. (2010). A three-thousand-year history of vegetation and human impact in Burgundy (France) reconstructed from pollen and non-pollen palynomophs analysis. Comptes Rendus Biologies, 333(11–12), 850–857.

    Article  Google Scholar 

  • Linnaeus, C. (1750). Sponsalia plantarum. J.G. Wahlbom, Stockholm. Facs. Edition, Rediviva, (19).

    Google Scholar 

  • Mac Kenzie, W. S., Adams, A. E., & Brodie, K. H. (2017). Rocks and minerals in thin section: A colour atlas. London: CRC Press.

    Google Scholar 

  • Macphail, R. I. (1998). A reply to Carter and Davidson’s “an evaluation of the contribution of soil micromorphology to the study of ancient arable agriculture”. Geoarchaeology, 13, 549–564. https://doi.org/10.1002/(SICI)1520-6548(199808)13:6<549::AID-GEA2>3.0.CO;2-Z

    Article  Google Scholar 

  • Macphail, R. I., Courty, M., & Goldberg, P. (1990). Soil and micromorphology in archaeology. Endeavour, 14, 163–171. https://doi.org/10.1016/0160-9327(90)90039-T

    Article  Google Scholar 

  • Macphail, R. I., & Goldberg, P. (2018). Applied Soils and Micromorphology in Archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Madella, M., Lancelotti, C., & Savard, M. (2014). Ancient plants and people: Contemporary trends in archaeobotany. Tucson, AZ: University of Arizona Press.

    Google Scholar 

  • Malpighi, M. (1675 and 1679). Die Anatomie der Pflanzen. I und II Theil. London 1675 Bearbeitet von M. Mobius. Ostwald’s Klassiker Nr. 120. Engelmann, Leipzig (1901).

    Google Scholar 

  • Mange, M. A., & Maurer, H. (2012). Heavy minerals in colour. Berlin: Springer.

    Google Scholar 

  • Manten, A. A. (1966). Half a century of modern palynology. Earth-Science Reviews, 2, 277–316.

    Article  Google Scholar 

  • Marquer, L. (2010). From microcharcoal to macrocharcoal: Reconstruction of the “wood charcoal” signature in paleolithic archaeological contexts. P@lethnologie, 2, 105–115.

    Google Scholar 

  • Marston, J. M., D’Alpoim Guedes, J., & Warinner, C. (Eds.). (2014). Method and theory in paleoethnobotany. Boulder, CO: University Press of Colorado.

    Google Scholar 

  • Menzies, J., van der Meer, J. J. M., Domack, E., & Wellner, J. S. (2010). Micromorphology: As a tool in the detection, analyses and interpretation of (glacial) sediments and man-made materials. Proceedings of the Geologists’ Association, 121(3), 281–292. https://doi.org/10.1016/j.pgeola.2010.07.005

    Article  Google Scholar 

  • Mercuri, A. M., Accorsi, C., & Bandini Mazzanti, M. (2002). The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Vegetion History and Archaeobotany, 11, 263–276. https://doi.org/10.1007/s003340200039

    Article  Google Scholar 

  • Mercuri, A. M., Allevato, E., Arobba, D., Bandini Mazzanti, M., Bosi, G., Caramiello, R., et al. (2015). Pollen and macroremains from Holocene archaeological sites: A dataset for the understanding of the bio-cultural diversity of the Italian landscape. Review of Palaeobotany and Palynology, 218, 250–266. https://doi.org/10.1016/j.revpalbo.2014.05.010

    Article  Google Scholar 

  • Miola, A. (2012). Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972–2011). Review of Palaeobotany and Palynology, 186, 142–161.

    Article  Google Scholar 

  • Miola, A., Favaretto, S., Sostizzo, I., Valentini, G., & Asioli, A. (2010). Holocene salt marsh plant communities in the North Adriatic coastal plain (Italy) as reflected by pollen, non-pollen palynomorphs and plant macrofossil analyses. Vegetation history and archaeobotany, 19(5–6), 513–529.

    Google Scholar 

  • Mooney, S., & Tinner, W. (2011). The analysis of charcoal in peat and organic sediments. Mires and Peat, 7, 1–18.

    Google Scholar 

  • Moore, P. D., Webb, J. A., & Collison, M. E. (1991). Pollen analysis. Blackwell Scientific Publications.

    Google Scholar 

  • Mücher, H. J., & Morozova, T. D. (1983). The application of soil micromorphology in quaternary geology. In P. Bullock & C. P. Miuphy (Eds.), Soil micromorphology (Vol. 1, pp. 151–194). Berkhamsted: A.B. Academic Publishers.

    Google Scholar 

  • Muir, M. D., & Sarjeant, W. A. S. (1977). Palynology, part I and II. Stroudsburg, PA: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Nicosia, C., & Stoops, G. (Eds.). (2017). Archaeological soil and sediment micromorphology. Hoboken, NJ: Wiley.

    Google Scholar 

  • Nimis, P. L., Scheidegger, C., & Wolseley, P. A. (2002). Monitoring with lichens—monitoring lichens. In NATO science series, IV. Earth and environmental science (Vol. 7). Dordrecht: Springer.

    Google Scholar 

  • Oeggl, K. (2009). The significance of the Tyrolean Iceman for the archaeobotany of Central Europe. Vegetation History and Archaeobotany, 18(1), 1–11.

    Article  Google Scholar 

  • Pearsall, D. M. (2016). Paleoethnobotany: A handbook of procedures. New York: Routledge. https://doi.org/10.4324/9781315423098

    Book  Google Scholar 

  • Pettijohn, F. J., Potter P. E. & Siever R. (1972). Sand and Sandstone. New York: Springer.

    Google Scholar 

  • Pichler, H., & Schmitt-Riegraf, C. (1997). Rock-forming minerals in thin section. London: Chapman & Hall.

    Book  Google Scholar 

  • Pichler, S. L., Pümpin, C., Brönnimann, D., & Rentzel, P. (2014). Life in the proto-urban style: The identification of parasite eggs in micromorphological thin sections from the Basel-Gasfabrik Late Iron Age settlement, Switzerland. Journal of Archaeological Science, 43, 55–65. https://doi.org/10.1016/j.jas.2013.12.002

    Article  Google Scholar 

  • Pidwirny, M. (2006). Erosion and deposition. Fundamentals of physical geography (2nd Ed.). Retrieved December 12, 2019, from http://www.physicalgeography.net/fundamentals/10w.html

  • Pini, R., Bertini, A., Martinetto, E., & Vassio, E. (2014). The pleistocene flora of northern Italy. In Palaeobotany of Italy (Vol. 9, pp. 290–307). Bolzano: Publication of the Museum of Nature South Tyrol.

    Google Scholar 

  • Piovan, S., Mozzi, P., & Stefani, C. (2010). Bronze age paleohydrography of the southern Venetian Plain. Geoarchaeology, 25, 6–35. https://doi.org/10.1002/gea.20300

    Article  Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Lanham: Altamira Press.

    Google Scholar 

  • Ponnuchamy, R., Bonhomme, V., Prasad, S., Das, L., Patel, P., Gaucherel, C., et al. (2014). Honey pollen: Using melissopalynology to understand foraging preferences of bees in tropical South India. PLoS One, 9(7), e101618. https://doi.org/10.1371/journal.pone.0101618

    Article  Google Scholar 

  • Pound, M., Dalgleish, A., McCoy, J., & Partington, J. (2018). Melissopalynology of honey from Ponteland, UK, shows the role of Brassica napus in supporting honey production in a suburban to rural setting. Palynology, 42(3), 400–405. https://doi.org/10.1080/01916122.2017.1362485

    Article  Google Scholar 

  • Punt, W., & Clarke, G. C. S. (1984). The Northwest European Pollen Flora (Vol. 4). Amsterdam: Elsevier.

    Google Scholar 

  • Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143(1–2), 1–81.

    Article  Google Scholar 

  • Rapp Jr., G. (1987). Geoarcheology. Annual Review of Earth and Planetary Sciences, 15, 97–113.

    Article  Google Scholar 

  • Reedy, C. L. (2008). Thin-section petrography of stone and ceramic cultural materials. London: Archetype.

    Google Scholar 

  • Reinsch, P. F. (1884). Micro-palaeophytologia: Formationis carboniferae. Erlangae: Redemptio: Auctoris et apud T. Krische.

    Google Scholar 

  • Renfrew, J. M. (1973). Palaeoethnobotany. The prehistoric food plants of the Near East and Europe. New York: Columbia University Press.

    Google Scholar 

  • Schoonen, M. A. A. (2004). Mechanisms of sedimentary pyrite formation. In J. P. Amend, K. J. Edwards, & T. W. Lyons (Eds.), Sulfur biogeochemistry - Past and present (Geological Society of America Special Paper) (Vol. 379, pp. 117–134). Boulder, CO: Geological Society of America.

    Google Scholar 

  • Seppä, H. (2013). Pollen analysis, principles. In S. A. Elias (Ed.), The encyclopedia of quaternary science (Vol. 3, pp. 794–804). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Siart, C., Forbriger, M., & Bubenzer, O. (Eds.). (2017). Digital geoarchaeology. New techniques for interdisciplinary human-environmental research. Cham: Springer.

    Google Scholar 

  • Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). Washington, D.C.: USDA-Natural Resources Conservation Service.

    Google Scholar 

  • Sorby, H. C. (1882). Preparation of transparent sections of rocks and minerals. The Northern Microscopist, 2, 101–104.

    Google Scholar 

  • Speer, J. H. (2010). Fundamentals of tree-ring research. Tucson, AZ: University of Arizona Press.

    Google Scholar 

  • Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13, 615–622.

    Google Scholar 

  • Stoops, G., Marcelino, V., & Mees, F. (Eds.). (2018). Interpretation of micromorphological features of soils and regoliths (2nd ed.). Oxford: Elsevier.

    Google Scholar 

  • Taylor, E. L., Taylor, T. N., & Krings, M. (2009). Paleobotany: The biology and evolution of fossil plants. London: Academic Press.

    Google Scholar 

  • Trask, P. D. (1932). Origin and environment of source sediments of petroleum. Houston, TX: Gulf Publishing.

    Google Scholar 

  • Tunno, I., & Mensing, S. A. (2017). The value of non-pollen palynomorphs in interpreting paleoecological change in the Great Basin (Nevada, USA). Quaternary Research, 87(3), 529–543.

    Article  Google Scholar 

  • USDA, (1988). Soil survey of Orangeburg County, South Carolina. Washington, D.C.: US Department of Agriculture, Soil and Conservation Center.

    Google Scholar 

  • Van der Meer, J. J. M. (1987). Micromorphology of glacial sediments as a tool in distinguishing genetic varieties of till. In Geological Survey of Finland Special Paper (Vol. 3, pp. 77–89). Espoo: Geological Survey of Finland.

    Google Scholar 

  • Van Geel, B. (2002). Non-Pollen Palynomorphs. In J. P. Smol, H. J. B. Birks, W. M. Last, R. S. Bradley, & K. Alverson (Eds.), Tracking environmental change using lake sediments. Developments in paleoenvironmental research (Vol. 3). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Veeken, P. C. (2006). Seismic stratigraphy, basin analysis and reservoir characterization (Vol. 37). San Diego, CA: Elsevier.

    Google Scholar 

  • Von Post, L. (1916). Einige südschwedische Quellmoore. Bulletin of the Geological Institution of the University of Upsala, 15, 219–278.

    Google Scholar 

  • Walker, M. (2005). Quaternary dating methods. Chichester: Wiley.

    Google Scholar 

  • Ward, L. F. (1885). Sketch of paleobotany. Washington, DC: Government Printing Office.

    Google Scholar 

  • Waters, M. (1991). The geoarchaeology of gullies and arroyos in Southern Arizona. Journal of Field Archaeology, 18(2), 141–159. https://doi.org/10.2307/530254

    Article  Google Scholar 

  • Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.

    Article  Google Scholar 

  • Wodehouse, R. P. (1935). Pollen grains. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Zetzsche, F., & Kalin, O. (1928). Untersuchungen iiber die Membrm der Sporen and Pollen. Helvetica Chimica Acta, 14, 58–76.

    Google Scholar 

  • Zetzsche, F., Kalt, P., Leichti, J., & Ziegler, E. (1931). Zur Konstitution des Lycopodiumsporonins des Tasmanins und des Lange-Sporonins. Journal für Praktische Chemie, 148, 67–84.

    Google Scholar 

  • Zohary, D., & Hopf, M. (2000). Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley (No. Ed. 3). Oxford: Oxford University Press.

    Google Scholar 

  • Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of plants in the old world: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Zuffa, G. G. (1980). Hybrid arenites: Their composition and classification. Journal of Sedimentary Research, 50, 21–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piovan, S.E. (2020). Processing Stratigraphical Archives. In: The Geohistorical Approach. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-42439-8_8

Download citation

Publish with us

Policies and ethics