Skip to main content

Querying Fuzzy Spatiotemporal Data Using XQuery

  • Chapter
  • First Online:
Modeling Fuzzy Spatiotemporal Data with XML

Part of the book series: Studies in Computational Intelligence ((SCI,volume 894))

  • 220 Accesses

Abstract

How to accurately handle query criteria based on user’s preferences has become a key technology for querying fuzzy spatiotemporal data, typically collected by modern monitoring devices such as GPS receivers and sensors. However, although fuzzy logic is incorporated in querying fuzzy spatiotemporal data and querying fuzzy data in XML, relatively little work has been carried out in querying fuzzy spatiotemporal in XML. In this paper, we propose an approach for querying fuzzy spatiotemporal data using XQuery. On the basis of its architecture, we make extensions to XQuery language. The extensions consist of the new xs: truth data type intended to represent gradual truth degrees , and the new Val element and the new Poss attribute to handle satisfaction degrees . Furthermore, fuzzy spatiotemporal linguistic terms are extended to declare fuzzy terms and use them in query expressions. Additionally, FLWOR are extended to support fuzzy spatiotemporal queries. After extensions of XQuery on fuzzy spatiotemporal data, we present real case query examples, discuss crucial details of their processing, and present evaluations of each query example. Finally, the comparative study demonstrates the advantages of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeli, H., & Jiang, X. (2003). Neuro-fuzzy logic model for freeway work zone capacity estimation. Journal of Transportation Engineering, 129(5), 484–493.

    Article  Google Scholar 

  • Adeli, H., & Jiang, X. (2006). Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, 132(1), 102–111.

    Article  Google Scholar 

  • Bennett, B., Cohn, A. G., Wolter, F., & Zakharyaschev, M. (2002). Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence, 17(3), 239–251.

    Article  Google Scholar 

  • Berzal, F., Cubero, J. C., Marín, N., Vila, M. A., Kacprzyk, J., & Zadrożny, S. (2007). A general framework for computing with words in object-oriented programming. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(supp01), 111–131.

    Article  Google Scholar 

  • Bordogna, G., Pagani, M., Pasi, G., & Villa, R. (2006). A flexible news filtering model exploiting a hierarchical fuzzy categorization. In Proceedings of the 2006 International Conference on Flexible Query Answering Systems (pp. 170–184). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G., & Spoletini, P. (2009). A fuzzy extension of the XPath query language. Journal of Intelligent Information Systems, 33(3), 285–305.

    Article  Google Scholar 

  • Chamberlin, D. (2002). XQuery: An XML query language. IBM Systems Journal, 41(4), 597–615.

    Article  Google Scholar 

  • Chen, Y., & Revesz, P. (2003). Querying spatiotemporal XML using DataFox. In Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence (pp. 301–309). Halifax, Canada: IEEE.

    Google Scholar 

  • Claramunt, C., & Thériault, M. (1995). Managing time in GIS an event-oriented approach. In Recent Advances in Temporal Databases (pp. 23–42). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Deng, S. S., Xia, L. H., & Fang, W. (2009). Analysis of spatio-temporal characteristics of urban land cover and its landscape pattern: a case study in NanHai district of Foshan city. In Proceedings of the 2009 Joint Urban Remote Sensing Event (pp. 1–9). Shanghai, China: IEEE.

    Google Scholar 

  • Du, Z., Jeong, Y. S., Jeong, M. K., & Kong, S. G. (2012). Multidimensional local spatial autocorrelation measure for integrating spatial and spectral information in hyperspectral image band selection. Applied Intelligence, 36(3), 542–552.

    Article  Google Scholar 

  • Franceschet, M., Montanari, A., & Gubiani, D. (2007). Modeling and validating spatio-temporal conceptual schemas in XML schema. In Proceedings of the 18th International Workshop on Database and Expert Systems Applications (pp. 25–29). Regensburg, Germany: IEEE.

    Google Scholar 

  • Freitag, S., Graf, W., & Kaliske, M. (2011). Recurrent neural networks for fuzzy data. Integrated Computer-Aided Engineering, 18(3), 265–280.

    Article  Google Scholar 

  • Goncalves, M., & Tineo, L. (2010). Fuzzy XQuery. In Soft Computing in XML Data Management (pp. 133–163). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Huang, B., Yi, S., & Chan, W. T. (2004). Spatio-temporal information integration in XML. Future Generation Computer Systems, 20(7), 1157–1170.

    Article  Google Scholar 

  • Jiang, X., & Adeli, H. (2003). Fuzzy clustering approach for accurate embedding dimension identification in chaotic time series. Integrated Computer-Aided Engineering, 10(3), 287–302.

    Article  Google Scholar 

  • Jiang, X., & Adeli, H. (2008). Dynamic fuzzy wavelet neuroemulator for non-linear control of irregular building structures. International Journal for Numerical Methods in Engineering, 74(7), 1045–1066.

    Article  Google Scholar 

  • Karim, A., & Adeli, H. (2002). Comparison of fuzzy-wavelet radial basis function neural network freeway incident detection model with California algorithm. Journal of Transportation Engineering, 128(1), 21–30.

    Article  Google Scholar 

  • Liu, X., & Wan, Y. (2010). Storing spatio-temporal data in XML native database. In Proceedings of the 2010 2nd International Workshop on Database Technology and Applications (pp. 1–4). Wuhan, China: IEEE.

    Google Scholar 

  • Ma, Z. M., Liu, J., & Yan, L. (2010). Fuzzy data modeling and algebraic operations in XML. International Journal of Intelligent Systems, 25(9), 925–947.

    MATH  Google Scholar 

  • Ma, Z. M., Zhang, F., Yan, L., & Cheng, J. (2011). Extracting knowledge from fuzzy relational databases with description logic. Integrated Computer-Aided Engineering, 18(2), 181–200.

    Article  Google Scholar 

  • Mehrotra, R., & Sharma, A. (2009). Evaluating spatio-temporal representations in daily rainfall sequences from three stochastic multi-site weather generation approaches. Advances in Water Resources, 32(6), 948–962.

    Article  Google Scholar 

  • Meteorological Observations of Hong Kong in 2011. http://www.weather.gov.hk/wxinfo/pastwx/ywx2011.html.

  • Öztarak, H. (2006). Flexible querying using structural and event based multimodal video data model. In Proceedings of the 2006 International Conference on Flexible Query Answering Systems (pp. 75–86). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Polyzotis, N., Garofalakis, M., & Ioannidis, Y. (2004). Approximate XML query answers. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (pp. 263–274). Paris, France: ACM.

    Google Scholar 

  • Reuter, U. (2011). A fuzzy approach for modelling non-stochastic heterogeneous data in engineering based on cluster analysis. Integrated Computer-Aided Engineering, 18(3), 281–289.

    Article  Google Scholar 

  • Rizzolo, F., & Vaisman, A. A. (2008). Temporal XML: Modeling, indexing, and query processing. The VLDB Journal, 17(5), 1179–1212.

    Article  Google Scholar 

  • Rodrigues, R. D., Cruz, A. J. O., & Cavalcante, R. T. (2009). Aliança: A proposal for a fuzzy database architecture incorporating XML. Fuzzy Sets and Systems, 160(2), 269–279.

    Article  MathSciNet  Google Scholar 

  • Rokni, S., & Fayek, A. R. (2010). A multi-criteria optimization framework for industrial shop scheduling using fuzzy set theory. Integrated Computer-Aided Engineering, 17(3), 175–196.

    Article  Google Scholar 

  • Schneider, M. (2001). A design of topological predicates for complex crisp and fuzzy regions. In Proceedings of the 2001 International Conference on Conceptual Modeling (pp. 103–116). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Seto, J., Clement, S., Duong, D., Kianmehr, K., & Alhajj, R. (2009). Fuzzy query model for XML documents. In Proceedings of the 2009 International Conference on Intelligent Data Engineering and Automated Learning (pp. 333–340). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Sözer, A., Yazıcı, A., OÄŸuztüzün, H., & Petry, F. E. (2010). Querying fuzzy spatiotemporal databases: Implementation issues. In Uncertainty Approaches for Spatial Data Modeling and Processing (pp. 97–116). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Sözer, A., Yazıcı, A., OÄŸuztüzün, H., & TaÅŸ, O. (2008). Modeling and querying fuzzy spatiotemporal databases. Information Sciences, 178(19), 3665–3682.

    Article  Google Scholar 

  • Wattamwar, S. S., & Ghosh, H. (2008). Spatio-temporal query for multimedia databases. In Proceedings of the 2nd ACM Workshop on Multimedia Semantics (pp. 48–55). Vancouver, Canada: ACM.

    Google Scholar 

  • Worldweather. http://www.worldweather.cn/cloud/.

  • Yan, L., & Ma, Z. M. (2012). Comparison of entity with fuzzy data types in fuzzy object-oriented databases. Integrated Computer-Aided Engineering, 19(2), 199–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Z., Bai, L., Yan, L. (2020). Querying Fuzzy Spatiotemporal Data Using XQuery. In: Modeling Fuzzy Spatiotemporal Data with XML. Studies in Computational Intelligence, vol 894. Springer, Cham. https://doi.org/10.1007/978-3-030-41999-8_7

Download citation

Publish with us

Policies and ethics