Skip to main content

Breast Cancer Diagnostic Tool Using Deep Feedforward Neural Network and Mother Tree Optimization

  • Conference paper
  • First Online:
Book cover Optimization and Learning (OLA 2020)

Abstract

Automatic diagnostic tools have been extensively implemented in medical diagnosis processes of different diseases. In this regard, breast cancer diagnosis is particularly important as it becomes one of the most dangerous diseases for women. Consequently, regular and preemptive screening for breast cancer could help initiate treatment earlier and more effectively. In this regard, hospitals and clinics are in need to a robust diagnostic tool that could provide reliable results. The accuracy of diagnostic tools is an important factor that should be taken into consideration when designing a new system. This has motivated us to develop an automatic diagnostic system combining two methodologies: Deep Feedforward Neural Networks (DFNNs) and swarm intelligence algorithms. Swarm intelligence techniques are based on Particle Swarm Optimization (PSO) as well as the Mother Tree Optimization (MTO) algorithm we proposed in the past. In order to asses the performance, in terms of accuracy, of the proposed system, we have conducted several experiments using the Wisconsin Breast Cancer Dataset (WBCD). The results show that the DFNN combined with a variant of our MTO attains a high classification performance, reaching 100% precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner, H., Rothenbacher, D., Arndt, V.: Epidemiology of stomach cancer. In: Verma, M. (ed.) Cancer Epidemiology, pp. 467–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-60327-492-0_23

    Chapter  Google Scholar 

  2. Parkin, D.M., Bray, F., Ferlay, J., Pisani, P.: Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 94(2), 153–156 (2001)

    Article  Google Scholar 

  3. Rangayyan, R.M., El-Faramawy, N.M., Desautels, J.L., Alim, O.A.: Measures of acutance and shape for classification of breast tumors. IEEE Trans. Med. Imaging 16(6), 799–810 (1997)

    Article  Google Scholar 

  4. Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. Technical report, University of Wisconsin-Madison Department of Computer Sciences (1990)

    Google Scholar 

  5. Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996)

    Article  Google Scholar 

  6. Hamilton, H.J., Cercone, N., Shan, N.: RIAC: A Rule Induction Algorithm Based on Approximate Classification. Princeton, Citeseer (1996)

    Google Scholar 

  7. Salama, G.I., Abdelhalim, M., Zeid, M.A.: Breast cancer diagnosis on three different datasets using multi-classifiers. Breast Cancer (WDBC) 32(569), 2 (2012)

    Google Scholar 

  8. Polat, K., Güneş, S.: Breast cancer diagnosis using least square support vector machine. Digit. Signal Proc. 17(4), 694–701 (2007)

    Article  Google Scholar 

  9. Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16(2), 149–169 (1999)

    Article  Google Scholar 

  10. Pena-Reyes, C.A., Sipper, M.: A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17(2), 131–155 (1999)

    Article  Google Scholar 

  11. Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recogn. Lett. 24(14), 2195–2207 (2003)

    Article  Google Scholar 

  12. Paulin, F., Santhakumaran, A.: Classification of breast cancer by comparing back propagation training algorithms. Int. J. Comput. Sci. Eng. 3(1), 327–332 (2011)

    Google Scholar 

  13. Nahato, K.B., Harichandran, K.N., Arputharaj, K.: Knowledge mining from clinical datasets using rough sets and backpropagation neural network. Comput. Math. Methods Med. 2015, 13 (2015)

    Article  Google Scholar 

  14. Abdel-Zaher, A.M., Eldeib, A.M.: Breast cancer classification using deep belief networks. Expert Syst. Appl. 46, 139–144 (2016)

    Article  Google Scholar 

  15. Werbos, P.J.: The Roots of Backpropagation: from Ordered Derivatives to Neural Networks and Political Forecasting, vol. 1. Wiley, Hoboken (1994)

    Google Scholar 

  16. Hush, D.R., Horne, B.G.: Progress in supervised neural networks. IEEE Signal Process. Mag. 10(1), 8–39 (1993)

    Article  Google Scholar 

  17. Ozturk, C., Karaboga, D.: Hybrid artificial bee colony algorithm for neural network training. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 84–88. IEEE (2011)

    Google Scholar 

  18. Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 318–329. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73729-2_30

    Chapter  Google Scholar 

  19. Korani, W., Mouhoub, M., Spirty, R.: Mother tree optimization. In: Proceedings of the 2019 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2019), pp. 2206–2213. IEEE (2019)

    Google Scholar 

  20. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Mouhoub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Korani, W., Mouhoub, M. (2020). Breast Cancer Diagnostic Tool Using Deep Feedforward Neural Network and Mother Tree Optimization. In: Dorronsoro, B., Ruiz, P., de la Torre, J., Urda, D., Talbi, EG. (eds) Optimization and Learning. OLA 2020. Communications in Computer and Information Science, vol 1173. Springer, Cham. https://doi.org/10.1007/978-3-030-41913-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41913-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41912-7

  • Online ISBN: 978-3-030-41913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics