Skip to main content

The Cranial Nerves

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

With the exception of the olfactory and optic nerves, all cranial nerves enter or leave the brain stem. Three of the cranial nerves are purely sensory (I, II and VIII), five are motor (III, IV, VI, XI and XII) and the remaining nerves (V, VII, IX and X) are mixed. The olfactory nerve will be discussed in ► Chap. 14, the optic nerve in ► Chap. 8 and the cochlear nerve in ► Chap. 7. The nuclei of the cranial nerves are arranged in an orderly, more or less columnar fashion in the brain stem: motor nuclei, somatomotor, branchiomotor and visceromotor (parasympathetic), derived from the basal plate, are located medially, whereas sensory nuclei, somatosensory, viscerosensory and vestibulocochlear, derived from the alar plate, are found lateral to the sulcus limitans. The cranial nerves innervate structures in the head and neck as well as visceral organs in the thorax and abdomen. The cranial nerves control eye movements, mastication, vocalization, facial expression, respiration, heart rate and digestion. One or several of the cranial nerves are often involved in lesions of the brain stem, of which the location can usually be determined if the topographical anatomy of the cranial nerves and their nuclei is known. Several examples are shown in Clinical cases.

Following a few notes on the development of the brain stem and congenital cranial dysinnervation disorders (► Sect. 6.2), the following structures will be discussed: (1) ocular motor nerves and the effects of lesions of individual ocular motor nerves (► Sect. 6.3); (2) eye movements and some disorders affecting them (► Sect. 6.4); (3) the trigeminal nerve and changes in the blink reflex (► Sect. 6.5); (4) the facial nerve and peripheral facial nerve paralysis (► Sect. 6.6); (5) the gustatory system (► Sect. 6.7); (6) the vestibulocochlear nerve, vestibular control and some peripheral and central vestibular syndromes (► Sect. 6.8); and (7) the last four cranial nerves and some disorders affecting them (► Sects. 6.9 and 6.10). The English terms of the Terminologia Neuroanatomica are used throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarian S, Grüsser OJ, Guldin WO (1993) Corticofugal projections to the vestibular nuclei in squirrel monkeys. Further evidence of multiple cortical vestibular fields. J Comp Neurol 332:89–104

    CAS  PubMed  Google Scholar 

  • Allum JH, Honegger F, Schicks H (1994) The influence of a bilateral vestibular deficit on postural synergies. J Vestib Res 4:49–70

    CAS  PubMed  Google Scholar 

  • Aramideh M, Ongerboer de Visser BW (2002) Brainstem reflexes: electrodiagnostic techniques, physiology, normative data, and clinical applications. Muscle Nerve 26:14–30

    CAS  PubMed  Google Scholar 

  • Aramideh M, Ongerboer de Visser BW, Koelman JH, Majoie CB, Holstege G (1997) The late blink reflex response abnormality due to lesion of the lateral tegmental field. Brain 120:1685–1692

    PubMed  Google Scholar 

  • Atkinson WJ (1949) The anterior inferior cerebellar artery. J Neurol Neurosurg Psychiatry 12:137–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker J, Goldberg J, Peterson B, Schor R (1982) Oculomotor reflexes after semicircular canal plugging in cats. Brain Res 252:151–155

    CAS  PubMed  Google Scholar 

  • Baker R, Berthoz A (1975) Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res 86:121–127

    CAS  PubMed  Google Scholar 

  • Baloh R, Honrubia V (2001) Clinical neurophysiology of the vestibular system, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Barry MA, Gatenby JC, Zeigler JD, Gore JC (2001) Hemispheric dominance of cortical activity evoked by focal electrogustatory stimuli. Chem Senses 26:471–482

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Norgren R (1979) Central distribution of the trigeminal, facial, glossopharyngeal and vagus nerves in the monkey. J Comp Neurol 184:455–472

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brainstem nuclei. J Comp Neurol 190:259–282

    CAS  PubMed  Google Scholar 

  • Benjamin RM, Burton H (1968) Projections of taste nerve afferents to anterior opercular-insular cortex in squirrel monkey (Saimiri sciureus). Brain Res 7:221–231

    CAS  PubMed  Google Scholar 

  • Benjamin RM, Emmers R, Blomquist AJ (1968) Projection of tongue nerve afferents to somatic sensory area I in squirrel monkey (Saimiri sciureus). Brain Res 7:208–220

    CAS  PubMed  Google Scholar 

  • Bogousslavsky J, Maeder P, Regli F, Meuli R (1994) Pure midbrain infarction: clinical syndromes, MRI and etiologic patterns. Neurology 44:2032–2040

    CAS  PubMed  Google Scholar 

  • Bosley TM, Salih MA, Alorainy IA, Oystreck DT, Nester M, Abu-Amero KK et al (2007) Clinical characterization of the HOXA1 syndrome BSAS variant. Neurology 69:1245–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosley TM, Alorainy IA, Salih MA, Aldhalacu HM, Abu-Amero KK, Oystreck DT et al (2008) The clinical spectrum of homozygous HOXA1 mutations. Am J Med Genet A 146A:1235–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowsher D (1997) Trigeminal neuralgia: an anatomically oriented review. Clin Anat 10:409–415

    CAS  PubMed  Google Scholar 

  • Brandt T, Strupp M (2005) General vestibular testing. Clin Neurophysiol 116:406–426

    PubMed  Google Scholar 

  • Brandt T, Dieterich M, Danek A (1994) Vestibular cortex lesions affect the perception of verticality. Ann Neurol 35:403–412

    CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M, Strupp M (2005) Vertigo and dizziness: common complaints. Springer, London

    Google Scholar 

  • Brodal A (1981) The cranial nerves. In: Brodal A (ed) Neurological anatomy, 3rd edn. Oxford University Press, New York, pp 448–577

    Google Scholar 

  • Brodal A (1983) The perihypoglossal nuclei in the macaque monkey and chimpanzee. J Comp Neurol 218:257–269

    CAS  PubMed  Google Scholar 

  • Brodal A (1984) The vestibular nuclei in the macaque monkey. J Comp Neurol 227:252–266

    CAS  PubMed  Google Scholar 

  • Brödel M (1946) Three unpublished drawings of the anatomy of the human ear. Saunders, Philadelphia

    Google Scholar 

  • Büttner-Ennever JA (1977) Pathways from the pontine reticular formation to structures controlling horizontal and vertical eye movements in the monkey. In: Baker R, Berthoz A (eds) Control of gaze by brainstem neurons. Elsevier, Amsterdam, pp 89–93

    Google Scholar 

  • Büttner-Ennever JA (1999) A review of otolith pathways to brainstem and cerebellum. Ann N Y Acad Sci 871:51–64

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in the monkey. J Comp Neurol 197:17–27

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Büttner U (1978) A cell group associated with vertical eye movements in the rostral mesencephalic reticular formation of the monkey. Brain Res 151:31–47

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Gerrits NM (2004) Vestibular system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1213–1240

    Google Scholar 

  • Büttner-Ennever JA, Horn AKE (1996) Pathways from cell groups of the paramedian tracts to the floccular region. Ann N Y Acad Sci 781:532–540

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE (2004) Reticular formation: eye movements, gaze, and blinks. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 479–510

    Google Scholar 

  • Büttner-Ennever JA, Horn AKE (eds) (2014) Olszewski and Baxter: cytoarchitecture of the human brain stem, 3rd edn. Karger, Basel

    Google Scholar 

  • Büttner-Ennever JA, Büttner U, Cohen B, Baumgartner G (1982) Vertical gaze paralysis and the rostral interstitial nucleus of the medial longitudinal fasciculus. Brain 105:125–149

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE, Schmidtke K (1989a) Cell groups in the medial longitudinal fasciculus and paramedian tracts. Rev Neurol (Paris) 145:533–539

    Google Scholar 

  • Büttner-Ennever JA, Acheson JF, Büttner U, Graham EM, Leonard TJK, Sanders MD, Russell RM (1989b) Ptosis and supranuclear downgaze paralysis. Neurology 39:385–389

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Jenkins C, Armin-Parsa H, Horn AKE, Elston JS (1996) A neuroanatomical analysis of lid-eye coordination in cases of ptosis and downgaze paralysis. Clin Neuropathol 15:313–318

    PubMed  Google Scholar 

  • Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1389–1409

    Google Scholar 

  • Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51

    CAS  PubMed  Google Scholar 

  • Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298

    CAS  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1995a) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    CAS  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1995b) Sensory and premotor connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:642–664

    CAS  PubMed  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Carleton SC (1983) Comparison of vestibular and abducens internuclear projections to the medial rectus subdivision of the oculomotor nucleus in the monkey. Brain Res 274:144–149

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Cowie RJ (1985a) Transneuronal transport in the vestibular and auditory systems of the squirrel monkey and the arctic ground squirrel. I. Vestibular systems. Brain Res 358:249–263

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Cowie RJ (1985b) Connections and oculomotor projections of the superior vestibular nucleus and cell group “y”. Brain Res 336:265–287

    CAS  PubMed  Google Scholar 

  • Cascino G, Karnes W (1990) Gustatory and second sensory seizures associated with lesions in the insular cortex seen on magnetic resonance imaging. J Epilepsy 3:185–187

    Google Scholar 

  • Coiner B, Pan H, Bennett ML, Bodian YG, Iyer S, O’Neill-Pirozes TM et al (2019) Functional neuroanatomy of the human eye movement network: a review and atlas. Brain Struct Funct 224:2603–2617

    CAS  PubMed  Google Scholar 

  • Combarros O, Sanchez-Juan P, Berciano J, De Pablos C (2000) Hemiageusia from an ipsilateral multiple sclerosis plaque at the midpontine tegmentum. J Neurol Neurosurg Psychiatry 68:796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623

    CAS  PubMed  Google Scholar 

  • Craig AD (2014) Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. J Comp Neurol 522:36–63

    PubMed  PubMed Central  Google Scholar 

  • Craig AD (2015) How do you feel? An interoceptive moment with your neurobiological self. Princeton University Press, Princeton

    Google Scholar 

  • Cruccu G, Iannetti GD, Marx JJ, Thoemke F, Truini A, Fitzek S et al (2005) Brainstem reflex circuits revisited. Brain 128:386–394

    CAS  PubMed  Google Scholar 

  • Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural and clinical consequences of unilateral vestibular loss. J Vestib Res 5:67–107

    CAS  PubMed  Google Scholar 

  • Dehaene I, Lammens M (1991) Paralysis of saccades and pursuit: Clinicopathological study. Neurology 41:414–415

    CAS  PubMed  Google Scholar 

  • Dieterich M (2007) Functional brain imaging: a window into the visuo-vestibular systems. Curr Opin Neurol 20:12–18

    PubMed  Google Scholar 

  • Dieterich M, Brandt T (1993) Thalamic infarctions: differential effects on vestibular function in roll plane (35 patients). Neurology 43:1732–1740

    CAS  PubMed  Google Scholar 

  • Dieterich M, Brandt T (2001) Vestibular syndromes and vertigo. In: Bogousslavsky J, Caplan LR (eds) Stroke Syndromes, 2nd edn. Cambridge University Press, Cambridge, pp 129–143

    Google Scholar 

  • Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552

    PubMed  Google Scholar 

  • Dieterich M, Bense S, Stephan T, Schwaiger M, Bartenstein P, Brandt T (2005a) Medial vestibular nucleus lesions in Wallenberg’s syndrome cause decreased activity of the contralateral vestibular cortex. Ann N Y Acad Sci 1039:1–16

    Google Scholar 

  • Dieterich M, Bartenstein P, Spiegel SD, Bense S, Schwaiger M, Brandt T (2005b) Thalamic infarctions cause side-specific suppression of vestibular cortex activators. Brain 128:2052–2067

    CAS  PubMed  Google Scholar 

  • Doty RW (1968) Neural organization of deglutition. In: Code CF (ed) Handbook of physiology, sect 6, Alimentary canal, vol IV. American Physiological Society, Washington, DC, pp 1861–1902

    Google Scholar 

  • Duvernoy HM (1995) The human brain stem and cerebellum: surface, structure, vascularization and three-dimensional sectional anatomy with MRI. Springer, Wien-New York

    Google Scholar 

  • Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K (2006) Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum Brain Mapp 27:611–621

    PubMed  Google Scholar 

  • Engle EC (2002) Applications of molecular genetics to the understanding of congenital ocular motility disorders. Ann N Y Acad Sci 956:55–63

    CAS  PubMed  Google Scholar 

  • Engle EC (2006) The genetic basis of complex strabismus. Pediatr Res 59:343–346

    PubMed  Google Scholar 

  • Engle EC (2007) Oculomotility disorders arising from disruptions in brainstem motor neuron development. Arch Neurol 64:633–657

    PubMed  Google Scholar 

  • Engle EC, Leigh RJ (2002) Genes, brainstem development, and eye movements. Neurology 59:304–305

    PubMed  Google Scholar 

  • Esteban Á, Traba A, Prieto J (2004) Eyelid movements in health and disease. The supranuclear impairment of the palpebral motility. Neurophysiol Clin 34:3–15

    PubMed  Google Scholar 

  • Evinger C (1988) Extraocular motor nuclei: location, morphology and afferents. Rev Oculomot Res 2:81–117

    CAS  PubMed  Google Scholar 

  • Faurion A, Cerf B, Van de Moortele P-F, Lobel E, MacLead P, LeBihan D (1999) Human taste cortical areas studied with functional magnetic resonance imaging: evidence of functional localization related to handedness. Neurosci Lett 277:189–192

    CAS  PubMed  Google Scholar 

  • Fay RA, Norgren R (1997a) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. I. Masticatory muscle motor systems. Brain Res Rev 25:255–275

    CAS  PubMed  Google Scholar 

  • Fay RA, Norgren R (1997b) Ibid. II. Facial muscle motor systems. Brain Res Rev 25:276–290

    CAS  PubMed  Google Scholar 

  • Fay RA, Norgren R (1997c) Ibid. III. Lingual muscle motor systems. Brain Res Rev 25:291–311

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg J (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg J (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long duration centrifugal force. J Neurophysiol 39:970–984

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg J, Abend W (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35:978–997

    CAS  PubMed  Google Scholar 

  • Fox PT, Fox JM, Raichle ME, Burde RM (1985) The role of the cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol 54:348–369

    CAS  PubMed  Google Scholar 

  • Frey S, Petrides M (1999) Re-examination of the human taste region: a positron emission tomographic study. Eur J Neurosci 11:2985–2988

    CAS  PubMed  Google Scholar 

  • Fukushima K (1987) The interstitial nucleus of Cajal and its role in the control of movements of head and eyes. Prog Neurobiol 29:107–192

    CAS  PubMed  Google Scholar 

  • Gasser RF, May M (2000) Embryonic development. In: May M, Schwaitkin BM (eds) The facial nerve, May’s, 2nd edn. Thieme, New York, pp 1–17

    Google Scholar 

  • Gavalas A, Studer M, Lumsden A, Rijli FM, Krumlauf R, Chambon P (1998) Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125:1123–1136

    CAS  PubMed  Google Scholar 

  • Gavalas A, Ruhrberg C, Livet J, Henderson CE, Krumlauf R (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 130:5663–5679

    CAS  Google Scholar 

  • Geerlings RPJ, van Domburg PHMF (2014) Orbital apex syndrome caused by aspergillosis. Tijdschr Neurol Neurochir 116:176–181 (in Dutch)

    Google Scholar 

  • Genc BO, Genc E, Acik L, Ilhan S, Paksoy Y (2004) Acquired ocular motor apraxia from bilateral frontoparietal infarcts associated with Takayasu arteritis. J Neurol Neurosurg Psychiatry 75:1651–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg J, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660

    CAS  PubMed  Google Scholar 

  • Goto N, Yamamoto T, Kaneko M, Tomita H (1983) Primary pontine hemorrhage and gustatory disturbance: clinicoanatomic study. Stroke 14:507–511

    CAS  PubMed  Google Scholar 

  • Graf W, Gerrits N, Yatim-Dhiba N, Ugolini G (2002) Mapping the oculomotor system: the power of transneuronal labelling with rabies virus. Eur J Neurosci 15:1557–1562

    PubMed  Google Scholar 

  • Graham SH, Sharp FR, Dillon W (1988) Intraoral sensation in patients with brainstem lesion: role of the rostral spinal trigeminal nuclei in pons. Neurology 38:1529–1533

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Hartwieg EA (1974) Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81:543–551

    CAS  PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990a) Localization and responses of neurons in the parieto-insular cortex of awake monkeys (Macaca fascicularis). J Physiol Lond 430:537–557

    PubMed  PubMed Central  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990b) Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol Lond 430:559–583

    PubMed  PubMed Central  Google Scholar 

  • Guldin W, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:254–259

    CAS  PubMed  Google Scholar 

  • Guldin WO, Akbarian S, Grüsser OJ (1992) Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J Comp Neurol 326:375–401

    CAS  PubMed  Google Scholar 

  • Gunny R, Yousry TA (2007) Imaging anatomy of the vestibular and visual systems. Curr Opin Neurol 20:3–11

    PubMed  Google Scholar 

  • Guthrie S (2007) Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8:859–871

    CAS  PubMed  Google Scholar 

  • Gutowski NJ, Bosley TM, Engle E (2003) Workshop report 110th ENMC international workshop: the congenital cranial dysinnervation disorders (CCDDs). Neuromuscul Disord 13:573–578

    CAS  PubMed  Google Scholar 

  • Guy JR, Day AL, Mickle JP, Schatz NY (1989) Contralateral trochlear nerve paresis and ipsilateral Horner’s syndrome. Am J Ophthalmol 107:73–76

    CAS  PubMed  Google Scholar 

  • Hafferl A (1957) Lehrbuch der topographischen Anatomie. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • Heidary G, Traboulsi EI, Engle EC (2012) The genetics of strabismus and associated disorders. In: Traboulsi EI (ed) Genetic diseases of the eye. Oxford University Press, Oxford, New York

    Google Scholar 

  • Helmchen C, Rambold H (2007) The eyelid and its contribution to eye movement. Dev Ophthalmol 40:110–131

    CAS  PubMed  Google Scholar 

  • Henn V, Lang W, Hepp K, Reisine H (1984) Experimental gaze palsies in monkeys and their relation to human pathology. Brain 107:619–636

    PubMed  Google Scholar 

  • Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34

    CAS  PubMed  Google Scholar 

  • Hirose G, Halmagyi GM (1996) Brain tumours and balance disorders. In: Baloh RW, Halmagyi GM (eds) Disorders of the vestibular system. Oxford University Press, New York, pp 446–460

    Google Scholar 

  • Hockman CH, Bieger D, Weerasuriya A (1979) Supranuclear pathways of swallowing. Prog Neurobiol 12:15–32

    CAS  PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM (1977) Propriobulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100:239–264

    CAS  PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM, Dekker JJ (1977) Ibid. II. An autoradiographic tracing study in cat. Brain 100:265–286

    Google Scholar 

  • Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I (1983) Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. Brain Behav Evol 23:47–62

    CAS  PubMed  Google Scholar 

  • Holstein GR (2012) The vestibular system. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1239–1269

    Google Scholar 

  • Horn AKE (2006) The reticular formation. Prog Brain Res 151:33–79

    Google Scholar 

  • Horn AKE, Adamczyk C (2012) Reticular formation: eye movements, gaze and blinks. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 328–366

    Google Scholar 

  • Horn AKE, Büttner-Ennever JA (1998) Premotor neurons for vertical eye movements in the rostral mesencephalon of monkey and human: histologic identification by parvalbumin immunostaining. J Comp Neurol 392:413–427

    CAS  PubMed  Google Scholar 

  • Horn AKE, Leigh RJ (2011) The anatomy and physiology of the ocular motor system. Handb Clin Neurol 102:21–69

    PubMed  Google Scholar 

  • Horn AKE, Büttner-Ennever JA, Wahle P, Reichenberger I (1994) Neurotransmitter profile of saccadic omnipause neurons in the nucleus raphe interpositus. J Neurosci 14:2032–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horn AKE, Büttner-Ennever JA, Suzuki Y, Henn V (1995) Histological identification of premotor neurons for horizontal saccades in monkey and man by parvalbumin immunostaining. J Comp Neurol 359:350–363

    CAS  PubMed  Google Scholar 

  • Horn AKE, Büttner-Ennever JA, Büttner U (1996) Saccadic premotor neurons in the brain stem: functional neuroanatomy and clinical implications. Neuro-Ophthalmology 16:229–240

    Google Scholar 

  • Horn AKE, Büttner-Ennever JA, Gayde M, Messoudi A (2000) Neuroanatomical identification of mesencephalic premotor neurons coordinating eyelid with upgaze in the monkey and man. J Comp Neurol 420:19–34

    CAS  PubMed  Google Scholar 

  • Horn AKE, Brückner G, Härtig W, Messoudi A (2003) Saccadic omnipause and burst neurons in monkey and human are ensheathed by perikaryal nets but differ in their expression of calcium-binding proteins. J Comp Neurol 455:341–352

    CAS  PubMed  Google Scholar 

  • Horn AKE, Eberhorn A, Härtig W, Ardeleanu P, Messoudi A, Büttner-Ennever JA (2008) Perioculomotor cell groups in monkey and man defined by their histochemical and functional properties: reappraisal of the Edinger-Westphal nucleus. J Comp Neurol 507:1317–1335

    PubMed  Google Scholar 

  • Hotchkiss MG, Miller NR, Clark AW, Green WR (1980) Bilateral Duane’s retraction syndrome: a clinico-pathologic case report. Arch Ophthalmol 98:870–874

    CAS  PubMed  Google Scholar 

  • Imagawa M, Isu N, Sasaki M, Endo K, Ikegami H, Uchino Y (1995) Axonal projections of utricular afferents to the vestibular nuclei and the abducens nucleus in cats. Neurosci Lett 186:87–90

    CAS  PubMed  Google Scholar 

  • Imagawa M, Graf WM, Sato H, Suwa H, Isu N, Izumi R, Uchino Y (1998) Morphology of single afferents of the saccular macula in cats. Neurosci Lett 240:127–130

    CAS  PubMed  Google Scholar 

  • Ito S, Ogawa H (1994) Neural activities in the frontal-opercular cortex of macaque monkeys during tasting and mastication. Jpn J Physiol 44:141–156

    CAS  PubMed  Google Scholar 

  • Jannetta PJ (1980) Neurovascular compression in cranial nerve and systemic disease. Ann Surg 192:518–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81:929–969

    CAS  PubMed  Google Scholar 

  • Jen J, Coulin C, Bosley TM, Salih MAM, Sabatti C, Nelson SF, Baloh RW (2002) Familial horizontal gaze with progressive scoliosis (HGPS) maps to chromosome 11q23-25. Neurology 59:432–435

    PubMed  Google Scholar 

  • Jen J, Chan W-M, Bosley TM, Wan J, Carr JR, Rüb U et al (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304:1509–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia M, Mesulam M-M (1980) Brain stem projections of sensory and motor components of the vagus complex in the rat. II. Laryngeal, tracheobronchial, pulmonary, cardiac and gastrointestinal branches. J Comp Neurol 193:467–508

    CAS  PubMed  Google Scholar 

  • Keshner E, Allum J, Pfaltz C (1987) Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Exp Brain Res 69:77–92

    CAS  PubMed  Google Scholar 

  • Kim HN, Kim YH, Park IY, Kim GR, Chung IH (1990) Variability of the surgical anatomy of the neurovascular complex of the cerebellopontine angle. Ann Otol Rhinol Laryngol 90:288–296

    Google Scholar 

  • King A, Menon RS, Hachinski V, Cechetto DF (1999) Human forebrain activation by visceral stimuli. J Comp Neurol 413:572–582

    CAS  PubMed  Google Scholar 

  • Kobayakawa T, Endo H, Ayabe-Kanamura S, Kumagai T, Yamaguchi Y, Kikuchi Y et al (1996) The primary gustatory area in human cerebral cortex studied by magnetoencephalography. Neurosci Lett 212:155–158

    CAS  PubMed  Google Scholar 

  • Kobayakawa T, Ogawa H, Kaneda H, Ayabe-Kanamura S, Endo H, Saito S (1999) Spatio-temporal analysis of cortical activity evoked by gustatory stimulation in humans. Chem Senses 24:201–209

    CAS  PubMed  Google Scholar 

  • Kokkoroyannis T, Scudder CA, Balaban CD, Highstein SM, Moschovakis AK (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal. I. Efferent projections. J Neurophysiol 75:725–739

    CAS  PubMed  Google Scholar 

  • Konen CS, Kleiser R, Seitz RJ, Bremmer F (2005) An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165:203–216

    PubMed  Google Scholar 

  • Kuypers HGJM (1958a) An anatomical analysis of cortico-bulbar connexions to the pons and lower brain stem in the cat. J Anat (Lond) 92:198–218

    CAS  Google Scholar 

  • Kuypers HGJM (1958b) Cortico-bulbar connexions to the pons and lower brain stem in man. Brain 81:364–388

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1958c) Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 110:221–256

    CAS  PubMed  Google Scholar 

  • Kwon M, Lee JH, Kim JS (2005) Dysphagia in unilateral medullary infarction. Neurology 65:714–718

    PubMed  Google Scholar 

  • Lane JI, Witte RJ, Driscoll CLW, Comp JJ, Robb RA (2004) Imaging microscopy of the middle and inner ear. Part I: CT microscopy. Clin Anat 17:607–612

    PubMed  Google Scholar 

  • Lane JI, Witte RJ, Henson OW, Driscoll CLW, Comp J, Robb RA (2005) Ibid. part II: MR microscopy. Clin Anat 18:409–415

    PubMed  Google Scholar 

  • Lang J (1992) Klinische Anatomie des Ohres. Springer, Vienna-New York

    Google Scholar 

  • Lang W, Büttner-Ennever JA, Büttner U (1979) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res 177:3–17

    CAS  PubMed  Google Scholar 

  • Langer TP, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25

    CAS  PubMed  Google Scholar 

  • Langer TP, Kaneko CR, Scudder CA, Fuchs AF (1986) Afferents to the abducens nucleus in the monkey and cat. J Comp Neurol 245:379–400

    CAS  PubMed  Google Scholar 

  • Leblanc A (1995) Anatomy and imaging of the cranial nerves, 2nd edn. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • Leigh RJ, Zee DS (2006) The neurology of eye movements, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Lenz FA, Gracely RH, Zirk TA, Leopold DA, Rowland LH, Dougherty PM (1997) Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. J Neurophysiol 77:3406–3409

    CAS  PubMed  Google Scholar 

  • Love S, Coakham HB (2001) Trigeminal neuralgia. Pathology and pathogenesis. Brain 124:2347–2360

    CAS  PubMed  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    CAS  PubMed  Google Scholar 

  • Luxon LM, Bamiou D-E (2007) Vestibular system disorders. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby Elsevier, Philadelphia, pp 337–352

    Google Scholar 

  • Maciewicz RJ, Kaneko CRS, Highstein SM, Baker R (1975) Morphophysiological identification of interneurons in the oculomotor nucleus that project to the abducens nucleus in the cat. Brain Res 96:60–65

    CAS  PubMed  Google Scholar 

  • Maes G, van Domburg P (2015) Dissection of the internal carotid artery and the Villaret’s syndrome. Tijdschr Neurol Neurochir 116:211–215 (in Dutch)

    Google Scholar 

  • Marín F, Arocha P, Puelles L (2008) Hox gene colinear expression in the avian medulla oblongata is correlated with pseudorhombomeric domains. Dev Biol 323:230–247

    PubMed  Google Scholar 

  • McCrea RA, Horn AKE (2006) Nucleus prepositus. Prog Brain Res 151:205–230

    CAS  PubMed  Google Scholar 

  • McCrea RA, Strassman A, May E, Highstein SM (1987a) Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:547–570

    CAS  PubMed  Google Scholar 

  • McCrea RA, Strassman A, Highstein SM (1987b) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:571–594

    CAS  PubMed  Google Scholar 

  • McElligott JG, Spencer RF (2000) Neuropharmacological aspects of the vestibulo-ocular reflex. In: Anderson JH, Beitz AJ (eds) Neurochemistry of the vestibular system. CRC Press, Boca Raton, pp 199–222

    Google Scholar 

  • McMasters RE, Weiss AH, Carpenter MB (1966) Vestibular projections to the nuclei of the extraocular muscles. Degeneration resulting from discrete partial lesions of the vestibular nuclei in the monkey. Am J Anat 118:163–194

    CAS  PubMed  Google Scholar 

  • McRitchie DA, Törk I (1993) The internal organization of the human solitary nucleus. Brain Res Bull 31:171–193

    CAS  PubMed  Google Scholar 

  • Meienberg O, Büttner-Ennever JA, Krans-Ruppert R (1981) Unilateral paralysis of conjugate gaze due to lesion of the abducens nucleus, clinico-pathological case report. Neuro-Ophthalmology 2:47–52

    Google Scholar 

  • Mesulam M-M, Mufson EJ (1982) Insula of the Old World monkey. III. Efferent cortical input and comments on function. J Comp Neurol 212:38–52

    CAS  PubMed  Google Scholar 

  • Miller AJ (1982) Deglutition. Physiol Rev 62:129–184

    CAS  PubMed  Google Scholar 

  • Miller NR, Kiel SM, Green WR, Clark AW (1982) Unilateral Duane’s retraction syndrome (type 1). Arch Ophthalmol 100:1468–1472

    CAS  PubMed  Google Scholar 

  • Miyazaki T, Yoshida Y, Hirano M, Shin T, Kanasaki T (1981) Central location of the motoneurons supplying the thyroid and the geniohyoid muscles as demonstrated by horseradish peroxidase methods. Brain Res 219:423–427

    CAS  PubMed  Google Scholar 

  • Mizuno N, Konishi A, Sato M (1975) Localization of masticatory motoneurons in the cat and rat by means of retrograde axonal transport of horseradish peroxidase. J Comp Neurol 164:105–116

    CAS  PubMed  Google Scholar 

  • Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate. A new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124:176–208

    CAS  PubMed  Google Scholar 

  • Morrow MJ, Sharpe JA (1990) Cerebral hemispheric localization of smooth pursuit asymmetry. Neurology 40:284–292

    CAS  PubMed  Google Scholar 

  • Moschovakis AK, Scudder CA, Highstein SM (1991a) Structure of the primate oculomotor burst generator. I. Medium-lead burst neurons with upward on-directions. J Neurophysiol 65:203–217

    CAS  PubMed  Google Scholar 

  • Moschovakis AK, Scudder CA, Highstein SM, Warden JD (1991b) Ibid. II. Medium-lead burst neurons with downward on-directions. J Neurophysiol 65:218–229

    CAS  PubMed  Google Scholar 

  • Moschovakis AK, Scudder CA, Highstein SM (1996) The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 50:133–254

    CAS  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1997) The timing and sequence of appearance of neuromeres and their derivatives in staged human embryos. Acta Anat (Basel) 158:83–99

    Google Scholar 

  • Müri RM, Chermann JF, Cohen L, Rivaud S, Pierrot-Deseilligny C (1996a) Ocular motor consequences of damage to the abducens nucleus area in humans. Neuro-Ophthalmology 16:191–195

    Google Scholar 

  • Müri RM, Iba-Zizen MT, Derosier C, Cabanis EA, Pierrot-Deseilligny C (1996b) Location of the human posterior eye field with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 60:445–448

    PubMed  PubMed Central  Google Scholar 

  • Nageotte J (1906) The pars intermedia or nervus intermedius of Wrisberg, and the bulbo-pontine gustatory nucleus in man. Rev Neurol Psychiatr 4:472–488

    Google Scholar 

  • Nakajima Y, Utsumi H, Takahashi H (1983) Ipsilateral disturbance of taste due to pontine hemorrhage. J Neurol 229:133–136

    CAS  PubMed  Google Scholar 

  • Ngwa EC, Zeeh C, Messoudi A, Büttner-Ennever JA, Horn AKE (2014) Delineation of motoneuron groups supplying individual eye muscles in the human oculomotor nucleus. Front Neuroanat 8:2

    Google Scholar 

  • Norgren R (1995) Gustatory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 751–771

    Google Scholar 

  • O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001) Representation of pleasant and aversive taste in the human brain. J Neurophysiol 85:1315–1321

    PubMed  Google Scholar 

  • Ogawa H, Ito SI, Nomura T (1985) Two distinct projection areas from tongue nerves in the frontal operculum of macaque monkeys as revealed with evoked potential mapping. Neurosci Res 2:447–459

    CAS  PubMed  Google Scholar 

  • Ogawa H, Ito SI, Nomura T (1989) Oral cavity representation at the frontal operculum of macaque monkeys. Neurosci Res 6:283–298

    CAS  PubMed  Google Scholar 

  • Olszewski J (1952) The thalamus of Macaca mulatta. An atlas for use with the stereotaxic instrument. Karger, Basel

    Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel

    Google Scholar 

  • Ongerboer de Visser BW (1980) The corneal reflex: electrophysiological and anatomical data in man. Prog Neurobiol 15:71–83

    CAS  PubMed  Google Scholar 

  • Ongerboer de Visser BW, Kuypers HGJM (1978) Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg’s syndrome. Brain 101:285–294

    CAS  PubMed  Google Scholar 

  • Onoda K, Ikeda M (1999) Gustatory disturbance due to cerebrovascular disorder. Laryngoscope 109:123–128

    CAS  PubMed  Google Scholar 

  • O’Rahilly R (1986) Gardner-Gray-O’Rahilly, anatomy: a regional study of human structure, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Osis JG, Baloh RW (1992) Vertigo and the anterior inferior cerebellar artery syndrome. Neurology 42:1274–1279

    Google Scholar 

  • Pasqualetti M, Rijli FM (2001) Homeobox gene mutations and brain-stem developmental disorders: learning from knockout mice. Curr Opin Neurol 14:177–184

    CAS  PubMed  Google Scholar 

  • Paxinos G, Huang X-F (1995) Atlas of the human brain stem. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Huang X-F, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 260–327

    Google Scholar 

  • Penfield W, Faulk M (1955) The insula. Further observations on its function. Brain 78:445–470

    CAS  PubMed  Google Scholar 

  • Perlia R (1889) Die Anatomie des Oculomotoriuscentrums beim Menschen. Albrecht Von Graefes Arch Ophthalmol 35:287–308

    Google Scholar 

  • Peterson BW, Richmond FJ (1988) Control of head movement. Oxford University Press, New York

    Google Scholar 

  • Pieh C, Lengyel D, Neff A, Fretz C, Gottlob I (2002) Brain stem hypoplasia in familial congenital horizontal gaze paralysis (FCGP) and kyphoscoliosis. Neurology 59:462–463

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C (2011) Nuclear, internuclear and supranuclear ocular motor disorders. Hb Clin Neurol 102:319–331

    Google Scholar 

  • Pierrot-Deseilligny C (2001) Eye movement abnormalities. In: Bogousslavsky J, Caplan LR (eds) Stroke Syndromes, 2nd edn. Cambridge University Press, Cambridge, pp 76–86

    Google Scholar 

  • Pierrot-Deseilligny C, Goasguen J (1984) Isolated abducens nucleus damage due to histiocytosis X. Electro-oculographic analysis and physiological deductions. Brain 107:1019–1032

    PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Chain F, Serdaru M, Gray F, Lhermitte F (1981a) The ‘one-and-a-half’ syndrome: electro-oculographic analyses of five cases with deduction about the physiologic mechanisms of lateral gaze. Brain 104:665–699

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Schaison M, Bousser MG, Brunet P (1981b) Syndrome nucléaire du nerf moteur oculaire commun: À propos de deux observations cliniques. Rev Neurol (Paris) 137:217–222

    CAS  Google Scholar 

  • Pierrot-Deseilligny C, Chain F, Gray F, Serdaru M, Escourolle R, Lhermitte F (1982) Parinaud’s syndrome: electro-oculographic and anatomical analysis of six vascular cases with deductions about vertical gaze organization in the premotor structures. Brain 105:667–696

    PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Gray F, Brunet O (1986) Infarcts of both inferior parietal lobules with impairment of visually guided eye movements, peripheral visual inattention and optic ataxia. Brain 109:81–97

    PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Gautier JC, Loron P (1988) Acquired ocular motor apraxia due to bilateral fronto-parietal infarcts. Ann Neurol 23:199–202

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Gaymard B, Müri R, Rivaud S (1997) Cerebral ocular motor signs. J Neurol 244:65–70

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny C, Milea D, Müri R (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25

    PubMed  Google Scholar 

  • Porter JD, Guthrie BL, Sparks DL (1983) Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport of horseradish peroxidase. J Comp Neurol 218:208–219

    CAS  PubMed  Google Scholar 

  • Porter JD, Burns LA, May PJ (1989) Morphological substrate for eyelid movements: innervation and structure of primate levator palpebrae superioris and orbicularis oculi muscles. J Comp Neurol 287:64–81

    CAS  PubMed  Google Scholar 

  • Pritchard TC (2012) Gustatory system. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1187–1218

    Google Scholar 

  • Pritchard TC, Norgren R (2004) Gustatory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1171–1196

    Google Scholar 

  • Pritchard TC, Hamilton R, Morse J, Norgren R (1986) Projections from thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    CAS  PubMed  Google Scholar 

  • Pritchard TC, Hamilton R, Norgren R (1989) Neural coding of gustatory information in the thalamus of Macaca mulatta. J Neurophysiol 61:1–14

    CAS  PubMed  Google Scholar 

  • Pritchard TC, Hamilton R, Norgren R (2000) Projections of the parabrachial nucleus in the Old World monkey. Exp Neurol 165:101–117

    CAS  PubMed  Google Scholar 

  • Prosiegel M, Holing R, Heintze M, Wagner-Sonntag E, Wiseman K (2005) The localization of central pattern generators for swallowing in humans. Acta Neurochir 93(Suppl):85–88

    CAS  Google Scholar 

  • Puelles López L, Martínez Pérez S, Martínez de la Torre M (2008) Neuroanatomía. Médica Panamericana, Buenos Aires, Madrid (in Spanish)

    Google Scholar 

  • Puelles L, Tvrdik P, Martínez-de-la-Torre M (2019) The postmigratory alar topography of visceral cranial nerve efferents challenges the classical model of hindbrain columns. Anat Rec 302:485–504

    Google Scholar 

  • Ranalli PJ, Sharpe JA, Fletcher WA (1988) Palsy of upward and downward saccadic pursuit and vestibular movements with a unilateral midbrain lesion: Physiopathologic correlations. Neurology 38:114–122

    CAS  PubMed  Google Scholar 

  • Rivaud S, Müri RM, Gaymard B, Vermersch AI, Pierrot-Deseilligny C (1994) Eye movement disorders after frontal eye field lesions in humans. Exp Brain Res 102:110–120

    CAS  PubMed  Google Scholar 

  • Rolls ET (2012) The emotional systems. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1328–1350

    Google Scholar 

  • Rolls ET, Baylis LL (1994) Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci 14:5437–5452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Yaxley S, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol 64:1055–1066

    CAS  PubMed  Google Scholar 

  • Rolls ET, Critchley HD, Nakeman EA, Mason R (1996) Responses of neurons in the primate taste cortex to the glutamate ion and to inosine 5′-monophosphate. Physiol Behav 59:991–1000

    CAS  PubMed  Google Scholar 

  • Rossel M, Capecchi MR (1999) Mice mutants for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040

    CAS  PubMed  Google Scholar 

  • Rucker JC (2011) Normal and abnormal lid function. Handb Clin Neurol 102:403–424

    PubMed  Google Scholar 

  • Sadjadpour K, Brodal A (1968) The vestibular nuclei in man. A morphological study in the light of experimental findings in the cat. J Hirnforsch 10:299–323

    CAS  PubMed  Google Scholar 

  • Satoda T, Takahashi O, Murakami C, Uchida T, Mizuno N (1996) The sites of origin and termination of afferent and efferent compartments in the lingual and pharyngeal branches of the glossopharyngeal nerve in the Japanese monkey (Macaca fuscata). Neurosci Res 24:385–392

    CAS  PubMed  Google Scholar 

  • Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol 44:1175–1189

    CAS  PubMed  Google Scholar 

  • Schmidtke K, Büttner-Ennever JA (1992) Nervous control of eyelid function – a review of clinical, experimental and physiological data. Brain 115:227–247

    PubMed  Google Scholar 

  • Schuknecht HF (1993) Pathology of the ear. Lea & Febiger, Philadelphia

    Google Scholar 

  • Schwartz TH, Lycette CA, Yoon SS, Kargman DE (1995) Clinicodariographic evidence for oculomotor fascicular anatomy. J Neurol Neurosurg Psychiatry 59:338–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sicotte NL, Salamon G, Shattuck DW, Hageman N, Rüb U, Salamon N et al (2006) Diffusion tensor MRI shows abnormal brainstem crossing fibers associated with ROBO3 mutations. Neurology 67:519–521

    CAS  PubMed  Google Scholar 

  • Skarf B (2005) Normal and abnormal eyelid function. In: Miller NR, Newman NJ, Biousse V, Kersing W (eds) Walsh and Hoyt’s clinical neuro-ophthalmology. Lippincott, Williams and Wilkins, Philadelphia, pp 1177–1229

    Google Scholar 

  • Small DM (2010) Taste representation in the human insula. Brain Struct Funct 214:551–561

    PubMed  Google Scholar 

  • Small DM, Jones-Gotman M, Zatorre RJ, Petrides M, Evans AC (1997) A role for the right anterior temporal lobe in taste quality recognition. J Neurosci 17:5136–5142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S, Petrides M (1999) Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 10:7–14

    CAS  PubMed  Google Scholar 

  • Smith P, Curthoys I (1989) Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Rev 14:155–180

    CAS  PubMed  Google Scholar 

  • Steiger HJ, Büttner-Ennever JA (1979) Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase. Brain Res 160:1–15

    CAS  PubMed  Google Scholar 

  • Strassman A, Evinger LC, McCrea RA, Baker RG, Highstein SM (1987) Anatomy and physiology of intracellularly labelled omnipause neurons in the cat and squirrel monkey. Exp Brain Res 67:436–440

    CAS  PubMed  Google Scholar 

  • Suárez C, Diaz C, Tolivia J, Alvarez JC, González del Rey C, Navarro A (1997) Morphometric analysis of the human vestibular nuclei. Anat Rec 247:271–288

    PubMed  Google Scholar 

  • Suzuki Y, Büttner-Ennever JA, Straumann D, Hepp K, Hess BJM, Henn V (1995) Deficits in torsional and vertical rapid eye movements and shift of Listing’s plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Exp Brain Res 106:215–232

    CAS  PubMed  Google Scholar 

  • Tarlov E (1969) The rostral projections of the primate vestibular nuclei. An experimental study in macaque, baboon and chimpanzee. J Comp Neurol 135:27–56

    CAS  PubMed  Google Scholar 

  • Tarlov E (1970) Organization of vestibulo-oculomotor projections in the cat. Brain Res 20:159–179

    CAS  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007a) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie (in Dutch), 3rd edn. Elsevier, Maarssen, pp 981–1141

    Google Scholar 

  • ten Donkelaar HJ, Vermeij-Keers C, Lohman AHM (2007b) Hoofd en hals. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie (in Dutch), 3rd edn. Elsevier, Maarssen, pp 545–727

    Google Scholar 

  • ten Donkelaar HJ, Cruysberg JRM, Pennings R, Lammens M (2014a) Development and developmental disorders of the brain stem. In: ten Donkelaar HJ, Lammens M (eds) Hori a clinical neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg-New York-Dordrecht-London, pp 321–370

    Google Scholar 

  • ten Donkelaar HJ, Vermeij-Keers C, Mathijssen IMJ (2014b) The neural crest and craniofacial malformations. In: ten Donkelaar HJ, Lammens M (eds) Hori a clinical Neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg-New York-Dordrecht-London, pp 219–269

    Google Scholar 

  • ten Donkelaar HJ, Yamada S, Shiota K, van der Vliet T (2014c) Overview of the development of the human brain and spinal cord. In: ten Donkelaar HJ, Lammens M (eds) Hori a clinical Neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg-New York-Dordrecht-London, pp 1–52

    Google Scholar 

  • ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155

    PubMed  Google Scholar 

  • ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated Terminologia Neuroanatomica: a concise encyclopedia of human neuroanatomy. Springer, Cham

    Google Scholar 

  • Thurston SE, Leigh RJ, Crawford T, Thompson A, Kennard C (1988) Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. Ann Neurol 23:266–273

    CAS  PubMed  Google Scholar 

  • Tischfield MA, Bosley TM, Salih MA, Alozainy IA, Sener EM, Nester MJ et al (2005) Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet 37:1035–1037

    CAS  PubMed  Google Scholar 

  • TNA (2017) Terminologia Neuroanatomica. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology

  • Tomás-Roca L, Corral-San-Miguel R, Aroca P, Puelles L, Marín F (2016) Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features. Brain Struct Funct 221:815–838

    PubMed  Google Scholar 

  • Törk I, McRitchie DA, Rikard-Bell GC, Paxinos G (1990) Autonomic regulatory centers in the medulla oblongata. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 251–259

    Google Scholar 

  • Uemura M, Matsuda K, Kuma M, Takeuchi Y, Matsushima M, Mizuno N (1979) Topographical arrangement of hypoglossal motoneurons: an HRP study in the cat. Neurosci Lett 13:99–104

    CAS  PubMed  Google Scholar 

  • Uesaka Y, Nose H, Ida M, Takagi A (1998) The pathway of gustatory fibers of the human ascends ipsilaterally in the pons. Neurology 50:827–828

    CAS  PubMed  Google Scholar 

  • Ugolini G (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher-order central nervous system cell groups. J Comp Neurol 356:457–480

    CAS  PubMed  Google Scholar 

  • Urban PP, Wicht S, Marx J, Mitrovic S, Fitzek C, Hopf HC (1998) Isolated voluntary facial paresis due to pontine ischemia. Neurology 50:1859–1862

    CAS  PubMed  Google Scholar 

  • Urban PP, Wicht S, Fitzek S, Marx J, Thömke F, Fitzek C, Hopf HC (1999) Ipsilateral facial weakness in upper medullary infarction – supranuclear or infranuclear origin? J Neurol 246:798–801

    CAS  PubMed  Google Scholar 

  • Urban PP, Wicht S, Vucorevic G, Fitzek S, Marx J, Thömke F et al (2001a) The course of corticofacial projections in the human brainstem. Brain 124:1866–1876

    CAS  PubMed  Google Scholar 

  • Urban PP, Wicht S, Vukurevic G, Fitzek C, Stoeter P, Massinger C, Hopf HC (2001b) Dysarthria in ischemic stroke. Lesion topography, clinicoradiologic correlation and etiology. Neurology 56:1021–1027

    CAS  PubMed  Google Scholar 

  • van Buskirk C (1945) The seventh nerve complex. J Comp Neurol 82:303–333

    Google Scholar 

  • van der Werf F, Aramideh M, Ongerboer de Visser BW, Baljet B, Speelman JD, Otto JA (1997) A retrograde double fluorescent tracing study of the levator palpebrae superioris muscle in the cynomolgus monkey. Exp Brain Res 113:174–179

    Google Scholar 

  • Veldhuizen MG, Albrecht J, Zelano C, Boesveldt S, Breslin P, Lundstrom JN (2011) Identification of human gustatory cortex by activation likelihood estimation. Hum Brain Mapp 32:2256–2266

    PubMed  PubMed Central  Google Scholar 

  • Vieille-Grosjean I, Hunt P, Gulisano M, Boncinelli E, Thorogood P (1997) Branchial HOX gene expression and human craniofacial development. Dev Biol 183:49–60

    CAS  PubMed  Google Scholar 

  • Vuilleumier P, Bogousslavsky J, Regli F (1995) Infarction of the lower brainstem. Clinical, aetiological and MRI-topographical correlations. Brain 118:1013–1025

    PubMed  Google Scholar 

  • Warwick R (1953) Representation of the extra-ocular muscles in the oculomotor nuclei of the monkey. J Comp Neurol 98:449–504

    CAS  PubMed  Google Scholar 

  • Watson C, Shimogori T, Puelles L (2017) Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol 525:2782–2799

    CAS  PubMed  Google Scholar 

  • Watson C, Bartholomaeus C, Puelles L (2019) Time for radical changes in brain stem nomenclature applying the lessons from developmental gene patterns. Front Neuroanat 13:10

    PubMed  PubMed Central  Google Scholar 

  • Williams NP, Roland PS, Yellin W (1997) Vestibular evaluation in patients with early multiple sclerosis. Am J Otol 18:93–100

    CAS  PubMed  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum, New York

    Google Scholar 

  • Wilson VJ, Peterson BW (1988) Vestibular and reticular projections to the neck. In: Peterson BW, Richmond FJ (eds) Control of head movements. Oxford University Press, New York, pp 129–140

    Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108

    CAS  PubMed  Google Scholar 

  • Wuyts FL, Furman J, Vanspauwen R, Van de Heyning P (2007) Vestibular function testing. Curr Opin Neurol 20:19–24

    PubMed  Google Scholar 

  • Yamashita M, Yamamoto T (2001) Aberrant pyramidal tract in the medial lemniscus of the human brain stem: Normal distribution and pathological changes. Eur Neurol 45:75–82

    CAS  PubMed  Google Scholar 

  • Zald DH, Pardo JV (1999) The functional neuroanatomy of voluntary swallowing. Ann Neurol 46:281–286

    CAS  PubMed  Google Scholar 

  • Zald DH, Lee JT, Fluegel KW, Pardo JV (1998) Aversive gustatory stimulation activates limbic circuits in humans. Brain 121:1143–1154

    PubMed  Google Scholar 

  • Zwergal A, Büttner-Ennever J, Brandt T, Strupp M (2008) An ipsilateral vestibulothalamic tract adjacent to the medial lemniscus in humans. Brain 131:2928–2935

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ten Donkelaar, H.J., Kachlík, D., Cruysberg, J.R.M., van der Vliet, T., van Domburg, P. (2020). The Cranial Nerves. In: Clinical Neuroanatomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41878-6_6

Download citation

Publish with us

Policies and ethics