Skip to main content

Notes on Techniques

  • Chapter
  • First Online:
  • 2698 Accesses

Abstract

In this introductory chapter, techniques for studying brain circuitry will be discussed. Many features of the fibre connections of the human brain and spinal cord have been elucidated by the analysis of normal preparations stained by the Weigert-Pal and Klüver-Barrera techniques in order to demonstrate the myelin sheaths around axons of neurons (► Sect. 3.2). Brain circuitry can be studied with these myelin-staining techniques, the classic Marchi and Nauta degeneration techniques and the more recent tract-tracing techniques (► Sect. 3.3), with immunohistochemistry (► Sect. 3.4) as well as with various electrophysiological techniques (► Sect. 3.5). The development of modern non-invasive imaging techniques (► Sect. 3.6) such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has greatly improved our knowledge of the circuitry of the human central nervous system (CNS). New developments in MR imaging such as diffusion MRI (dMRI; “tractography”) allow the visualization of the major fibre connections in the human CNS. These various techniques are illustrated with examples on the corticospinal tract and long association pathways. ► Section 3.7 includes a brief discussion of what became to be known as the human connectome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhinav K, Yeh F-C, Mansouri A, Zadeh G, Fernandez-Miranda JC (2015) High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery. Neuro-Oncology 17:1199–1209

    PubMed  PubMed Central  Google Scholar 

  • Agnesi F, Johnson MD, Vitek JL (2013) Deep brain stimulation: how does it work? Handb Clin Neurol 116:39–54

    Article  PubMed  Google Scholar 

  • Albrecht MH, Fernstrom RC (1959) A modified Nauta-Gygax method for human brain and spinal cord. Stain Technol 34:91–94

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Quirck GJ, Stewart M (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalogr Clin Neurophysiol 77:390–401

    Article  CAS  PubMed  Google Scholar 

  • Amassian VE, Eberle L, Maccabee P, Cracco RQ (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol 85:291–301

    Article  CAS  PubMed  Google Scholar 

  • Ameis SH, Catani M (2015) Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex 62:158–181

    Article  PubMed  Google Scholar 

  • Amon A, Alesch F (2017) Systems for deep brain stimulation: review of technical features. J Neural Transm (Vienna) 124:1083–1091

    Article  CAS  Google Scholar 

  • Archer DB, De V, Coombes SA (2018) A template and probabilistic atlas of the human sensorimotor tracts using diffusion MRI. Cereb Cortex 28:1685–1699

    Article  PubMed  Google Scholar 

  • Asanuma H, Sakata H (1967) Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J Neurophysiol 30:35–54

    Article  Google Scholar 

  • Atluri S, Frehlich M, Mei Y, Garcia-Dominguez L, Rogasch NC, Wong W et al (2016) TMSEEG: a MATLAB-based user interface for processing electrophysiological signals during transcranial magnetic stimulation. Front Neural Circuits 10:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Axer M, Amunts K, Gräβel D, Palm C, Dammers J, Axer H et al (2011a) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54:1091–1101

    Article  PubMed  Google Scholar 

  • Axer M, Gräβel D, Kleiner M, Dammers J, Dickscheid T, Reckfort J et al (2011b) High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform 5:34

    PubMed  PubMed Central  Google Scholar 

  • Axer M, Strohmer S, Gräβel D, Bücker O, Dohmen M, Reckfort J et al (2016) Estimating fiber orientation distribution functions in 3D-polarized light imaging. Front Neuroanat 10:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikovsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  PubMed  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet:1106–1107

    Google Scholar 

  • Basser PJ, Mattiello J, Le Bihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner C, Doppelhauer A, Deecke L, Barth DS, Zeithhofer J, Lindinger G, Sutherling WW (1991) Neuromagnetic investigation of somatotopy of human hand somatosensory cortex. Exp Brain Res 87:641–648

    Article  CAS  PubMed  Google Scholar 

  • Beach TG, McGeer EG (1987) Tract-tracing with horseradish peroxidase in the postmortem human brain. Neurosci Lett 76:37–41

    Article  CAS  PubMed  Google Scholar 

  • Beach TG, McGeer EG (1988) Retrograde filling of pyramidal neurons in postmortem human cerebral cortex using horseradish peroxidase. J Neurosci Methods 23:187–193

    Article  CAS  PubMed  Google Scholar 

  • Beck E (1950) The origin, course, and termination of the prefrontopontine tract in the human brain. Brain 73:368–391

    Article  CAS  PubMed  Google Scholar 

  • Beier K (2016) Anterograde viral tracer methods. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 203–218

    Chapter  Google Scholar 

  • Ben-Shachar M, Dougherty RF, Wandell BA (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155

    Article  Google Scholar 

  • Bentivoglio M, Cotrufo T, Ferrari S, Tesoriero C, Mariotto S, Bertini G et al (2019) The original histological slides of Camillo Golgi and his discoveries on neuronal structure. Front Neuroanat 13:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger H (1929) Ueber das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  • Björklund A, Hökfelt T (eds) (1983) Methods in chemical neuroanatomy, Handbook Chemical Neuroanatomy, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Blessing WW, Ding Z-Q, Li Y-W, Gierobe ZJ, Wilson AJ, Hallsworth PG, Wesselingh SL (1994) Transneuronal labelling of CNS neurons with herpes simplex virus. Prog Neurobiol 44:37–53

    Article  CAS  PubMed  Google Scholar 

  • Bodian D (1936) A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat Rec 65:89–97

    Article  Google Scholar 

  • Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci U S A:E2093–E2101

    Google Scholar 

  • Boucard CC (2006) Neuroimaging of visual field defects. University of Groningen, Thesis

    Google Scholar 

  • Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JBTM, Hooymans JMM, Cornelissen FW (2009) Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 132:1898–1906

    Article  PubMed  PubMed Central  Google Scholar 

  • Braak H (1980) Architectonics of the human cerebral cortex. studies in brain function, vol 4. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1985) Golgi preparations as a tool in neuropathology with particular reference to investigations of the human telencephalic cortex. Prog Neurobiol 25:93–139

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 5:71–82

    CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  • Braak H, Del Tredici K (2015) Neuroanatomy and pathology of sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol 215:1–162

    Article  PubMed  Google Scholar 

  • Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzheimer’s Research 3:235–247

    Google Scholar 

  • Braak H, Del Tredici K, Rüb K, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodal A (1939) Experimentelle Untersuchungen über retrograde Zellveränderungen in der unteren Olive nach Läsionen des Kleinhirns. Z Ges Neurol Psychiatr 166:647–704

    Article  Google Scholar 

  • Brodal A (1940) Modification of Gudden method for study of cerebral localization. Arch Neurol Psychiatr 43:46–58

    Article  Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Buckner RL, Andrews-Hama JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Buhl EH, Lübke J (1988) Intracellular Lucifer yellow injection in fixed brain slices combined with retrograde tracing, light and electron microscopy. Neuroscience 28:3–16

    Article  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    Article  CAS  PubMed  Google Scholar 

  • Bürgel U, Mecklenburg I, Blohm U, Zilles K (1997) Histological visualization of long fiber tracts in the white matter of adult human brains. J Brain Res 38:397–404

    Google Scholar 

  • Bürgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI-volume of a reference brain: position and spatial variability of the optic radiation. NeuroImage 10:89–499

    Article  Google Scholar 

  • Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. NeuroImage 29:1092–1105

    Article  PubMed  Google Scholar 

  • Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA (2009) Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cent Eur Neurosurg 70:27–35

    Article  PubMed  Google Scholar 

  • Burke D, Pierrot-Deseilligny E (2010) Caveats when studying motor cortex excitability and the cortical control of movement using transcranial magnetic stimulation. Clin Neurophysiol 121:121–123

    Article  PubMed  Google Scholar 

  • Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA et al (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage 117:408–416

    Article  PubMed  Google Scholar 

  • Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623

    Article  CAS  PubMed  Google Scholar 

  • Catani M (2006) Diffusion tensor magnetic resonance imaging tractography. Curr Opin Neurol 19:599–606

    Article  PubMed  Google Scholar 

  • Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239

    Article  PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press, Oxford

    Book  Google Scholar 

  • Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    Article  PubMed  Google Scholar 

  • Catani MC, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C et al (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136:2619–2628

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheney PD (2002) Electrophysiological methods for mapping brain motor and sensory circuits. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 189–206

    Chapter  Google Scholar 

  • Cheney PD, Fetz EE (1985) Comparable pattern of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J Neurophysiol 53:786–804

    Article  CAS  PubMed  Google Scholar 

  • Chenot Q, Tzourio-Mazoyer N, Rheault F, Descoteaux M, Crivello F, Zago L et al (2019) A population-based atlas of the human pyramidal tract in 410 healthy participants. Brain Struct Funct 224:599–612

    Article  PubMed  Google Scholar 

  • Cherry SR, Phelps ME (2002) Imaging brain function with positron emission tomography. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 485–511

    Chapter  Google Scholar 

  • Chiappa KH (1997) Evoked potentials in clinical medicine, 2nd edn. Raven, New York

    Google Scholar 

  • Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson AJ (2008) Diffusion-based tractography in neurological disorders: concept, applications and future developments. Lancet Neurol 7:715–727

    Article  PubMed  Google Scholar 

  • Clarke E, O’Malley CD (1996) The human brain and spinal cord, 2nd edn. Norman, San Francisco

    Google Scholar 

  • Cohen D (1968) Magnetoencephalography: detection of magnetic fields produced by α rhythm currents. Science 161:778–786

    Article  Google Scholar 

  • Coleman M (2005) Axon degeneration mechanisms: commonality and diversity. Nat Rev Neurosci 6:889–898

    Article  CAS  PubMed  Google Scholar 

  • Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15:394–406

    Article  CAS  PubMed  Google Scholar 

  • Contarino MF, Bour LJ, Verhagen R, Lourens MA, de Bie RM, van den Munckhof P, Schuurman PR (2014) Directional steering: a novel approach to deep brain stimulation. Neurology 83:1163–1169

    Article  PubMed  Google Scholar 

  • Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan WM (1970) Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin/Heidelberg/New York, pp 217–251

    Chapter  Google Scholar 

  • Cowan WM, Gottlieb DL, Hendrickson AE, Price JL, Woolsey TL (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21–51

    Article  CAS  PubMed  Google Scholar 

  • Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23:1–21

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC (1983) Immunohistochemistry, IBRO Handbook Series: Methods in the Neurosciences, vol 3. Wiley, Chichester

    Google Scholar 

  • Cuello AC (ed) (1993) Immunohistochemistry II, IBRO Handbook Series: Methods in the Neurosciences, vol 14. Wiley, Chichester

    Google Scholar 

  • Cummings TJ, Chugani DC, Shugani HT (1995) Positron emission tomography in pediatric epilepsy. Neurosurg Clin 6:465–472

    Article  CAS  Google Scholar 

  • Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danek A, Bauer M, Fries W (1990) Tracing of neuronal connections in the human brain by magnetic resonance imaging in vivo. Eur J Neurosci 2:112–115

    Article  PubMed  Google Scholar 

  • Darvas F, Pantaris D, Kucukaltun-Yildirim E, Leahy RM (2004) Mapping human brain function with MEG and EEG: methods and validation. NeuroImage 23(Suppl 1):S289–S299

    Article  PubMed  Google Scholar 

  • Dauguet J, Peled S, Berezowskii V, Delzescaux T, Warfield SK, Born R, Westin C-F (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. NeuroImage 37:530–538

    Article  PubMed  Google Scholar 

  • David S, Heemskerk AM, Corrivetti F, Thiebault de Schotten M, Sarubbo S, Corsini F et al (2019) The superoanterior fasciculus (SAF): A novel white matter pathway in the human brain? Front Neuroanat 13:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson GD (1951) A summation technique for detecting small signals in a large irregular background. J Physiol Lond 115:2P–3P

    CAS  PubMed  Google Scholar 

  • Day BL, Dresslet D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989a) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol Lond 412:449–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Maertens de Noordhout A, Nakashima K, Shannon K, Marsden CD (1989b) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in man. Brain 112:649–663

    Article  PubMed  Google Scholar 

  • de Lange SC, Scholtens LH, van den Berg LH, Boks MP, Bozzali M, Cahn W, et al. (2018) Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. bioRxiv. https://www.biorxiv.org/content/10.110/360586v1

    Google Scholar 

  • De Luca M, Beckman CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct nodes of long distance interactions in the human brain. NeuroImage 29:1359–1367

    Article  PubMed  Google Scholar 

  • Dell’Acqua F, Catani M (2012) Structural human brain networks: hot topics in diffusion tractography. Curr Opin Neurol 25:375–383

    PubMed  Google Scholar 

  • Devous MD (2002) SPECT functional brain imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 513–536

    Chapter  Google Scholar 

  • Dumitru D, Amato AA, Zwarts M (2002) Electrodiagnostic medicine, 2nd edn. Hanley & Belfus, Philadelphia

    Google Scholar 

  • Dusser de Barenne JG (1916a) Recherches expérimentales sur le localisation de la sensibilité de l’écorce du cerveau. Arch Néerl Physiol 1:15–26

    Google Scholar 

  • Dusser de Barenne JG (1916b) Experimental researches on sensory localizations. Exp Physiol 9:355–390

    Article  Google Scholar 

  • Dusser de Barenne JG, McCulloch WS (1938) Functional organization in the sensory cortex of the monkey (Macaca mulatta). J Neurophysiol 1:69–85

    Article  Google Scholar 

  • Edgley SA, Eyre JA, Lemon RN, Miller S (1990) Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol Lond 425:301–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards MJ, Tatelli P, Rothwell JC (2008) Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol 7:827–840

    Article  PubMed  Google Scholar 

  • Einstein G (1988) Intracellular injection of Lucifer yellow into cortical neurons in lightly fixed sections and its application to human autopsy material. J Neurosci Methods 26:95–103

    Article  CAS  PubMed  Google Scholar 

  • Emerson RG, Seval M, Pedley TA (1984) Somatosensory evoked potentials following median nerve stimulation. Brain 107:169–182

    Article  PubMed  Google Scholar 

  • Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia

    Book  Google Scholar 

  • Essayed WL, Zhang F, Unatkat P, Congrove GR, Golby AJ, O’Donnell LJ (2017) White matter tractography for neurosurgical planning: a topography-based review of the current state of the art. Neuroimage Clin 15:659–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstijnen T, Yeh F-C (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220:1665–1680

    Article  PubMed  Google Scholar 

  • Ferrier D (1876) The functions of the brain. Smith, Elder and Company, London

    Book  Google Scholar 

  • Fetz EE, Cheney PD (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 44:751–772

    Article  CAS  PubMed  Google Scholar 

  • Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald PB (2010) TMS-EEG: a technique that has come of age? Clin Neurophysiol 121:265–267

    Article  PubMed  Google Scholar 

  • Flechsig P (1901) Development (myelogenesis) localisation of the cerebral cortex in the human subject. Lancet 2:1027–1029

    Article  Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetische Grundlage. Thieme, Leipzig

    Google Scholar 

  • Forkel SJ, Thiebaut de Schotten M, Dell’Acqua F, Kalra L, Murphy DG, Williams SC, Catani M (2014a) Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain 137:2027–2039

    Article  PubMed  Google Scholar 

  • Forkel SJ, Thiebaut de Schotten M, Kawadler JM, Dell’Acqua F, Danek A, Catani M (2014b) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56:73–84

    Article  PubMed  Google Scholar 

  • Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetto M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W (eds) (2003) Human brain function, 2nd edn. Amsterdam, Elsevier

    Google Scholar 

  • Franssen H, Stegeman DF, Moleman J, Schoobaar RP (1992) Dipole modelling of median nerve SEPs in normal subjects and patients with small subcortical infarcts. Electroencephalogr Clin Neurophysiol 84:401–417

    Article  CAS  PubMed  Google Scholar 

  • Fritsch G, Hitzig E (1870) Ueber die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wiss Med 37:300–322

    Google Scholar 

  • Galuske R, Seehaus A, Roebroeck A (2016) Critical review and comparison of axonal structures in MRI/DTI and histology. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 337–347

    Chapter  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 17:1–92

    Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U et al (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: Cytoarchitecture and regional distribution of receptor-binding sites. NeuroImage 6:27–45

    Article  CAS  PubMed  Google Scholar 

  • Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109:509–514

    Article  CAS  PubMed  Google Scholar 

  • Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E et al (2016a) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasser MF, Smith SM, Marcus DS, Andersson JLR, Auerbach EJ, Behrens TEJ et al (2016b) The human connectome project’s neuroimaging approach. Nat Neurosci 19:1175–1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glees P (1946) Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropathol Exp Neurol 5:54–59

    Article  CAS  PubMed  Google Scholar 

  • Glees P, Le Gros Clark WE (1941) The termination of optic fibers in the lateral geniculate body of the monkey. J Anat (Lond) 75:295–308

    CAS  Google Scholar 

  • Glover JC, Petursdottir G, Jansen KS (1986) Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. J Neurosci Methods 18:243–254

    Article  CAS  PubMed  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurons and their processes in fixed tissue. Development 101:697–713

    Article  CAS  PubMed  Google Scholar 

  • Golgi C (1873) Sulla struttura delle sostanza grigia dell cervello. Gazz Med Ital Lombardia 33:244–246

    Google Scholar 

  • Golgi C (1875) Sui gliomi dell cervello. Riv Sper Freniatria Med Leg 1:66–78

    Google Scholar 

  • Graf W, Gerrits N, Yatim-Dhiba N, Ugolini G (2002) Mapping the oculomotor system: the power of transneuronal labeling with rabies virus. Eur J Neurosci 15:1557–1562

    Article  PubMed  Google Scholar 

  • Grafe MR, Leonard CM (1980) Successful silver impregnation of degenerating axons after long survivals in the human brain. J Neuropathol Exp Neurol 39:555–574

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    Article  CAS  PubMed  Google Scholar 

  • Griffin JW, George EB, Hsieh S-T, Glass JD (1995) Axonal degeneration and disorders of the axonal cytoskeleton. In: Waxman SG, Kocsis JD, Sytys PK (eds) The axon: structure, function and pathophysiology. Oxford University Press, New York, pp 375–390

    Chapter  Google Scholar 

  • Haddock JN, Berlin L (1950) Transsynaptic degeneration in the visual system. Arch Neurol Psychiatr 64:66–73

    Article  CAS  Google Scholar 

  • Hämäläinen M, Hari R (2002) Magnetoencephalographic characterization of dynamic brain activation: basic principles and methods of data collection and source analysis. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 227–253

    Chapter  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Hammerschlag R, Cyr JL, Brady ST (1994) Axonal transport and the neuronal cytoskeleton. In: Siegel GL, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. Raven, New York, pp 545–571

    Google Scholar 

  • Hari R (1993) Magnetoencephalography as a tool of clinical neurophysiology. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications and related fields. Williams & Wilkins, Baltimore, pp 1035–1061

    Google Scholar 

  • Hari R, Karhu J, Hämäläinen M, Mkuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Hultborn H, Jankowska E, Katz R, Storai B, Zytnicki D (1984) Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurones in rats and cats. Neurosci Lett 45:15–19

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson AE (1969) Electron microscopic radioautography: identification of origin of synaptic terminals in normal nervous tissue. Science 165:194–196

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    Article  CAS  PubMed  Google Scholar 

  • Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    Article  CAS  PubMed  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigondet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106:2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honig MC, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187

    Article  CAS  PubMed  Google Scholar 

  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11

    Article  CAS  PubMed  Google Scholar 

  • Houlden DA, Schwartz ML, Tator CH, Ashby P, MacKay WA (1999) Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci 19:1855–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  CAS  PubMed  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  • Ilmoniemi RJ, Kicic D (2010) Methodology for combined TMS and EEG. Brain Topogr 22:233–248

    Article  PubMed  Google Scholar 

  • Itakura T (ed) (2015) Deep brain stimulation for neurological disorders. Springer, Cham/Heidelberg/Dordrecht/London/New York

    Google Scholar 

  • Johansen-Berg H, Behrens TEJ (eds) (2009) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Elsevier, Amsterdam

    Google Scholar 

  • Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM et al (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci U S A 101:13335–13340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkunen P, Paakkonen A, Hukkanen T, Kononen M, Tilhonen P, Vanhatalo S et al (2008) Efficient reduction of stimulus artefact in TMS-EEG by epithelial short-circuiting by mini-punctures. Clin Neurophysiol 119:475–481

    Article  CAS  PubMed  Google Scholar 

  • Kamada K, Sawamura Y, Takeuchi F, Kawaguchi H, Kuriki S, Todo T et al (2005) Functional identification of the primary motor area by corticospinal tractography. Neurosurgery 56(Suppl 1):98–109

    PubMed  Google Scholar 

  • Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J (2002) Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 450:122–134

    Article  PubMed  Google Scholar 

  • Kashturi N, Lichtman JW (2010) Neurocartography. Neuropsychopharmacology 35:342–343

    Article  Google Scholar 

  • Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci 103:63–71

    CAS  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459

    PubMed  Google Scholar 

  • Kimiskidis VK, Tsimpiris A, Ryvlin P, Kalviainen R, Koutroumanidis M, Valentin A et al (2017) TMS combined with EEG in genetic generalized epilepsy: a phase II diagnostic accuracy study. Clin Neurophysiol 128:367–381

    Article  PubMed  Google Scholar 

  • Kitai ST, Bishop BA (1981) Intracellular staining of neurons. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 263–277

    Chapter  Google Scholar 

  • Klingler J (1935) Erleichterung der makroskopischen Präparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256

    Google Scholar 

  • Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369

    Article  CAS  PubMed  Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    Article  PubMed  Google Scholar 

  • Kobayashi K, Katayama Y (2015) Intraoperative microelectrode recording. In: Itakura T (ed) Deep brain stimulation for neurological disorders. Springer, Cham/Heidelberg/Dordrecht/London/New York, pp 39–48

    Google Scholar 

  • Kötter R, Stephan KE, Palomero-Gallagher N, Geyer S, Schleicher A, Zilles K (2001) Multimodal characterization of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat Embryol (Berl) 204:333–350

    Article  Google Scholar 

  • Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363–365

    Article  CAS  PubMed  Google Scholar 

  • Kubicki M, Shenton ME (2014) Diffusion tensor imaging findings and their implications in schizophrenia. Curr Opin Psychiatry 27:179–184

    Article  PubMed  Google Scholar 

  • Kupfer C (1965) The distribution of cell size in the lateral geniculate nucleus of man following transneuronal cell atrophy. J Neuropathol Exp Neurol 24:653–661

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13:71–75

    Article  CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Bentivoglio M, Catsman-Berrevoets CE, Bharos TB (1980) Double retrograde neuronal labeling through diverging axon collaterals using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    Article  CAS  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskopff RM, Poncelet BP et al (1991) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  Google Scholar 

  • Lasek RJ, Katz MJ (1987) Mechanisms at the axon tip regulate metabolic processes critical to axonal elongation. Prog Brain Res 71:49–60

    Article  CAS  PubMed  Google Scholar 

  • Lasek RJ, Joseph BS, Whitlock DG (1968) Evaluation of a radioautographic neuroanatomical tracing method. Brain Res 8:319–336

    Article  CAS  PubMed  Google Scholar 

  • LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1415–1417

    Article  Google Scholar 

  • Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissections. NeuroImage 39:62–79

    Article  PubMed  Google Scholar 

  • Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386

    Article  PubMed  Google Scholar 

  • Le Bihan D, Breton E (1985) Imagerie de diffusion in vivo par résonance magnétique nucléaire. C R Acad Sci Paris 301:1109–1112

    Google Scholar 

  • Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  • Le Gros Clark WE, Penman GG (1934) The projection of the retina in the lateral geniculate body. Proc Roy Soc B 114:292–313

    Google Scholar 

  • Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    Article  PubMed  Google Scholar 

  • León-Carrión J, León-Domínguez U (2012) Functional near-infrared spectroscopy (fNIRS): principles and neuroscientific applications. In: Neuroimaging – methods. In-Tech. www.intechopen.com. https://doi.org/10.5772/23146

  • Lévesque M, Parent A (2005) The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci U S A 102:11888–11893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtman JW, Sanes JR (2008) Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 18:346–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    Article  CAS  PubMed  Google Scholar 

  • Lioumis P, Kicic D, Savolainen P, Mäkela JP, Kahkonen S (2009) Reproducibility of TMS-evoked EEG responses. Hum Brain Mapp 30:1387–1396

    Article  PubMed  Google Scholar 

  • Lowe J, Cox G (1990) Neuropathological techniques. In: Bancroft JD, Stevens A, Turner DR (eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 343–378

    Google Scholar 

  • Loyez M (1920) Coloration des fibres nerveuses par le méthode à l’hématoxyline au fèr après inclusion à la celloidine. C R Séanc Soc Biol Fil 62:511

    Google Scholar 

  • Lubínska L (1964) Axoplasmic streaming in regenerating and in normal nerve fibres. Prog Brain Res 13:1–66

    Article  PubMed  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas cerebri humani. Karger, Basel

    Google Scholar 

  • Luksch H, Walkowiak W, Muňoz A, ten Donkelaar HJ (1996) The use of in vitro preparations of the isolated amphibian CNS in neuroanatomy and neurophysiology. J Neurosci Methods 70:91–108

    Article  CAS  PubMed  Google Scholar 

  • Luo L, O’Leary DDM (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    Article  CAS  PubMed  Google Scholar 

  • Magritis MR, Rösler KM, Truffert A, Myers JP (1998) Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain 121:437–450

    Article  Google Scholar 

  • Magritis MR, Rösler KM, Truffert A, Landis T, Hess CW (1999) A clinical study of motor evoked potentials using a triple stimulation technique. Brain 122:265–279

    Article  Google Scholar 

  • Mahlknecht P, Akram H, Georgiev D, Tripoliti E, Candelario J, Zachaia A et al (2017) Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord 32:1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Maier-Hein KH, Houde JC, Côté MP, Garyfallidis E, Zhong J et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandeville JB, Rosen BR (2002) Functional MRI. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 315–349

    Chapter  Google Scholar 

  • Marani E, Schoen JHR (2005) A reappraisal of the ascending systems in man, with emphasis on the medial lemniscus. Adv Anat Embryol Cell Biol 179:1–76

    Article  CAS  PubMed  Google Scholar 

  • Marchi V, Algeri G (1885) Sulle degenerazioni discendenti consecutive a lesioni sperimentale in diverse zone della corteccia cerebrale. Riv Sper Freniatria Med Leg 11:492–494

    Google Scholar 

  • Marinesco G (1898) Veränderungen der Nervencentren nach Ausreissung der Nerven mit einigen Erwägungen betreffs ihrer Natur. Neurol Zbl 17:882–890

    Google Scholar 

  • Martin JL, Barbanoj MJ, Schlaepfer TE, Clos S, Perez V, Kulisevsky J et al (2002) Transcranial magnetic stimulation for treating depression. Cochrane Database Syst Rev 2002(2):CD003493

    Google Scholar 

  • Masuda N (1914) Ueber das Brückengrau des Menschen (Griseum pontis) und dessen näheren Beziehungen zum Kleinhirn und Großhirn. Arb Hirnanat Inst Zürich 9:1–249

    Google Scholar 

  • Matthews MR, Cowan WM, Powell TPS (1960) Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. J Anat (Lond) 94:145–169

    CAS  Google Scholar 

  • Mazzarello P, Della Sala S (1993) The demonstration of the visual area by means of the atrophic method in the work of Bartolomeo Panizza (1855). J Hist Neurosci 2:315–322

    Article  CAS  PubMed  Google Scholar 

  • Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M (1979) Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch Neurol 36:814–818

    Article  CAS  PubMed  Google Scholar 

  • Miklossy J, Van der Loos H (1991) The long-distance effects of brain lesions: visualization of myelination pathways in the human brain using polarizing and fluorescence microscopy. J Neuropathol Exp Neurol 50:1–15

    Article  CAS  PubMed  Google Scholar 

  • Miklossy J, Clarke S, Van der Loos H (1991) The long-distance effects of brain lesions: visualization of axonal pathways and their terminations in the human brain by the Nauta method. J Neuropathol Exp Neurol 50:595–614

    Article  CAS  PubMed  Google Scholar 

  • Mills KR (1991) Magnetic brain stimulation: a tool to explore the action of the motor cortex on single human spinal motoneurones. Trends Neurosci 14:401–405

    Article  CAS  PubMed  Google Scholar 

  • Morel A (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa, New York/London

    Book  Google Scholar 

  • Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the brain basal ganglia: Anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443:86–103

    Article  CAS  PubMed  Google Scholar 

  • Mori S (2002) Principles, methods, and applications of diffusion tensor imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 379–397

    Chapter  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Wakana S, Nagae-Poetscher LM, van Zijl PC (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  • Moseley ME, Kucharczyk J, Asgari HS, Norman D (1991) Anisotropy in diffusion-weighted MRI. Magn Res Med 19: 321–326

    Article  CAS  Google Scholar 

  • Mufson EJ, Brady DR, Kordower JH (1990) Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol Aging 11:649–653

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y et al (1998) Somatosensory homunculus as drawn by MEG. NeuroImage 7:377–386

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Chiken S (2015) Mechanism of DBS: inhibition, excitation or disruption? In: Itakura T (ed) Deep brain stimulation for neurological disorders. Springer, Cham/Heidelberg/Dordrecht/London/New York, pp 13–20

    Google Scholar 

  • Nance DM, Burns J (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull 25:139–145

    Article  CAS  PubMed  Google Scholar 

  • Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral. Front Neuroanat 9:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105:223–269

    Article  CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1990) The corticospinal tract in man. Course and location of fibres at different segmental tracts. Brain 113:303–324

    Article  PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119:1809–1833

    Article  PubMed  Google Scholar 

  • Nauta WJH (1950) Ueber die sogenannte terminale Degeneration im Zentralnervensystem und ihre Darstellung durch Silberimprägnation. Schweiz Arch Neurol Psychiatr 66:353–376

    CAS  PubMed  Google Scholar 

  • Nauta WJH, Gygax PA (1951) Silver impregnation of degenerating axon terminals in the central nervous system. 1. Technic. 2. Chemical notes. Stain Technol 26:5–11

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJH, Gygax PA (1954) Silver impregnation of degenerating axons in the central nervous system: A modified technique. Stain Technol 29:91–93

    Article  CAS  PubMed  Google Scholar 

  • Nissl F (1885) Ueber die Untersuchungsmethoden der Grosshirnrinde. Neurol Zbl 4:500–501

    Google Scholar 

  • Nissl F (1892) Ueber die Veränderungen der Ganglienzellen am Facialiskern des Kaninchens nach Ausreissung der Nerven. Allg Z Psychiatr 48:197–198

    Google Scholar 

  • Nissl F (1894) Ueber die sogenannten Granula der Nervenzellen. Neurol Zbl 13:676–688

    Google Scholar 

  • O’Connell NE, Marston L, Spencer S, LH DS, Wand BM (2018) Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 2018(4):CD008208

    PubMed Central  Google Scholar 

  • Ochs S, Burger E (1958) Movement of substance proximo-distally in nerve axons as studied with spinal cord injections of radioactive phosphorus. Am J Phys 194:499–506

    Article  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Tank D, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi K, Zilles K, Amunts K, Faria A, Jiang H et al (2008) Human brain white matter atlas: identification and assigment of common anatomical structures in superficial white matter. NeuroImage 43:447–457

    Article  PubMed  Google Scholar 

  • Op de Coul AAW (1970) De Atrofie van de Kleine Handspieren. Thesis, University of Amsterdam (in Dutch)

    Google Scholar 

  • Pal J (1887) Ein Beitrag zur Nervenfärbetechnik. Z Wiss Mikrosk 4:92–96

    Google Scholar 

  • Palm C, Axer M, Gräβel D, Dammers J, Lindemeyer J, Zilles K et al (2010) Towards ultra-high resolution fibre tract mapping of the human brain – registration of polarized light images and reorientation of fibre vectors. Front Hum Neurosci 4:9

    PubMed  PubMed Central  Google Scholar 

  • Palomero-Gallagher N, Zilles K (2019) Cortical layers: cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. NeuroImage 197:716–741

    Article  PubMed  Google Scholar 

  • Panesar SS, Fernandez-Miranda J (2019) Commentary: the nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 13:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Panesar SS, Yeh F-C, Deibert CP, Fernandes-Cabral D, Rowthu V, Caltikei P et al (2017) A diffusion spectrum imaging-based tractography study into the anatomical subdivision and cortical connectivity of the ventral external capsule: Uncinate and inferior fronto-occipital fascicles. Neuroradiology 59:971–987

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre médian-parafascicular thalamic neurons in primates. J Comp Neurol 481:127–144

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2006) Single-axon tracing of the corticostriatal projections arising from primary motor cortex in primates. J Comp Neurol 496:202–216

    Article  PubMed  Google Scholar 

  • Parent M, Parent A (2016) The primate basal ganglia connectome as revealed by single-axon tracing. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 27–46

    Chapter  Google Scholar 

  • Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284

    Article  CAS  PubMed  Google Scholar 

  • Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439:162–175

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Walsh V (2002) Transcranial magnetic stimulation. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 255–290

    Chapter  Google Scholar 

  • Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of virtual lesions. Phil Trans R Soc Lond B 354:1229–1238

    Article  CAS  Google Scholar 

  • Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord. Its role in motor control and movement disorders. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pijnenburg R, Scheltens LH, Mautini D, Vanduffel MP (2019) Biological characteristics of connection-wise resting-state functional connectivity strength. Cereb Cortex 29:4646–4653

    Google Scholar 

  • Pizzella V, Romani G (1990) Principles of magnetoencephalography. In: Sato S (ed) Magnetoencephalography. Raven, New York, pp 1–9

    Google Scholar 

  • Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, Zilles K (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2232–2258

    Article  CAS  PubMed  Google Scholar 

  • Rademacher J, Bürgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. NeuroImage 17:142–160

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME (2011) The restless brain. Brain Connect 1:3–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichle ME (2015) The brain’s default network. Annu Rev Neurosci 38:433–447

    Article  CAS  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default model of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj A, Powell F (2018) Models of network spread and network degeneration in brain disorders. Biol Psychiatry Cogn Neuroimag 3:788–797

    Article  Google Scholar 

  • Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system (translated and edited by RM May). Oxford University Press, London (extended reprint edited by J De Felipe and EG Jones 1991 Oxford University Press, New York)

    Google Scholar 

  • Ramón-Moliner E (1970) The Golgi-Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin/Heidelberg/New York, pp 32–55

    Chapter  Google Scholar 

  • Reckfort J, Wiese H, Pietrzyk U, Zilles K, Amunts K (2015) A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI. Front Neuroanat 9:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Reich MM, Steigerwald F, Sawalhe AD, Reese R, Gunalan K, Johannes S et al (2015) Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol 2:427–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC et al (2015) Superficial white matter systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci U S A 112:E2820–E2828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rheault F, St-Onge E, Tzourio-Mazoyer N, Sidhu J, Petit L, Descoteaux M (2019) Bundle-specific tractography: enhancing fiber tracking with additional anatomical and orientational priors. NeuroImage. NeuroImage 186:129–139

    Google Scholar 

  • Ringel F, Sala F (2015) Intraoperative mapping and monitoring in supratentorial tumor surgery. J Neurosurg Sci 59:129–139

    CAS  PubMed  Google Scholar 

  • Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E et al (2018) Structural dysconnectivity of key cognitive and emotional hubs in young people at genetic risk for bipolar disorders. Mol Psychiatry 23:413–421

    Article  CAS  PubMed  Google Scholar 

  • Roebroeck A, Galuske R, Formisano E, Chiry O, Bratzke H, Ronen L et al (2008) High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4T. NeuroImage 39:157–168

    Article  PubMed  Google Scholar 

  • Rogasch NC, Sullivan C, Thompson RH, Rose NS, Bailey NW, Fitzgerald PB et al (2017) Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: a review and introduction to the open-source TESA software. NeuroImage 147:934–951

    Article  PubMed  Google Scholar 

  • Rothwell JC (1997) Techniques and mechanics of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Zhang B, Lee VM-Y, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol (Berl) 109:5–13

    Article  Google Scholar 

  • Ruda M, Coulter JD (1982) Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry. Brain Res 249:237–246

    Article  CAS  PubMed  Google Scholar 

  • Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16:593–599

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Lavallée P, Lévesque M, Parent A (2000a) Single-axon tracing of neurons in the external segment of the globus pallidus in primates. J Comp Neurol 417:17–31

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Parent M, Lévesque M, Parent A (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Gerfen CR (1985) Plant lectins and bacterial toxins as tools for tracing neuronal connections. Trends Neurosci 8:3780384

    Article  Google Scholar 

  • Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y et al (2019) Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage 185:1–11

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Schmahmann JD, Nitsch RM, Pandya DN (1992) The mysterious relocation of the bundle of Türck. Brain 115:1911–1924

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways in the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  • Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, fluoro-ruby, within the CNS. Brain Res 526:127–134

    Article  CAS  PubMed  Google Scholar 

  • Schoen JHR (1969) The corticofugal projection on the brain stem and spinal cord in man. Psychiatr Neurol Neurochir 72:121–128

    CAS  PubMed  Google Scholar 

  • Schwab ME, Thoenen H (1976) Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res 105:213–227

    Article  CAS  PubMed  Google Scholar 

  • Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven

    Google Scholar 

  • Smith MC (1951) The use of Marchi staining in the later stages of human tract degeneration. J Neurol Neurosurg Psychiatry 14:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MC (1956a) Observations on the extended use of the Marchi method. J Neurol Neurosurg Psychiatry 19:69–73

    Google Scholar 

  • Smith MC (1956b) The recognition and prevention of artefacts of the Marchi method. J Neurol Neurosurg Psychiatry 19:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MC, Strich SJ, Sharp P (1956) The value of the Marchi method for staining tissue stored in formalin for prolonged periods. J Neurol Neurosurg Psychiatry 19:62–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Vidaurre D, Backmann CF, Glasser NF, Jenkinson M, Miller KL et al (2013) Functional connectonics from resting-state fMRI. Trends Cogn Sci 17:666–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Spehlmann R (1985) Evoked potential primer. Butterworth, Boston

    Google Scholar 

  • Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125

    Article  PubMed  Google Scholar 

  • Sporns O (2012) Discovering the human connectome. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640

    Article  PubMed  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comp Biol 1:e42

    Article  CAS  Google Scholar 

  • Srinivasan R, Winter WR, Pl N (2006) Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res 159:29–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Stegeman DF, Dumitru D, King KC, Roeleveld K (1997) Near- and far-fields: source characteristics and the conducting medium in neurophysiology. J Clin Neurophysiol 14:429–442

    Article  CAS  PubMed  Google Scholar 

  • Steigerwald F, Matthies C, Volkmann J (2019) Directional deep brain stimulation. Neurotherapeutics 16:100–104

    Article  PubMed  Google Scholar 

  • Steinbusch HWM (1987) Monoaminergic neurons: light microscopy and ultrastructure, IBRO Handbook Series: Methods in the Neurosciences, vol 10. Wiley, Chichester

    Google Scholar 

  • Stephan KE, Hilgetag C-C, Burns GAPC, O’Neill MA, Young MP, Kötter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc Lond B 355:111–126

    Article  CAS  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759

    Article  CAS  PubMed  Google Scholar 

  • Strack AM, Loewy AD (1990) Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J Neurosci 10:2139–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su JH, Deng G, Cotman CW (1997) Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation. Neurobiol Dis 4:365–375

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Bota M (2010) Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture. Proc Natl Acad Sci U S A 107:20610–20617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson LW, Hahn JD, Sporns O (2017) Organizing principles for the cerebral cortex network of commissural and association connections. Proc Natl Acad Sci U S A:E9692–E9701

    Google Scholar 

  • Takemura H, Pestilli F, Weiner KS (2019) Comparative neuroanatomy: integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res 146:1–12

    Article  PubMed  Google Scholar 

  • Tamraz JC, Comair YG (2000) Atlas of regional anatomy of the brain using MRI. With functional correlations. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Thiebaut de Schotten M, Dell A’Acqua F, Valabreque R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Tomaiuolo F, Aiello M, Merola S, Silvetti M, Lecca F et al (2014) Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cereb Cortex 24:691–706

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Dell’Acqua F, Ratiu P, Leslie A, Howells H, Cabanis E et al (2015) From phineas gage and monsieur leborgne to H.M.: revisiting disconnection syndromes. Cereb Cortex 25:4812–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiebaut de Schotten M, Urbanski M, Batrancourt B, Levy R, Dubois B, Cerliani L, Volle E (2017) Rostro-caudal architecture of the frontal lobes in humans. Cereb Cortex 27:4033–4047

    PubMed  Google Scholar 

  • Thiebaut de Scotten M, Ffytche DH, Bizzi A, Dell’Acqua F, Allin M, Walshe M et al (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. NeuroImage 54:49–59

    Article  Google Scholar 

  • Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical acuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A 111:46

    Google Scholar 

  • Thompson PD, Day BL, Crockard HA, Calder I, Murray NMF, Rothwell JC (1991) Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation by the motor cortex. J Neurol Neurosurg Psychiatry 54:618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thut G, Ives JR, Kampmann F, Pastor MA, Pascual-Leone A (2005) A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Meth 141:207–217

    Article  Google Scholar 

  • Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23:1176–1185

    Article  PubMed  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35:1459–1472

    Article  PubMed  Google Scholar 

  • Trojanowski JQ, Gonatas JO, Gonatas NK (1982) Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrogradely transported markers than free HRP. Brain Res 231:33–50

    Article  CAS  PubMed  Google Scholar 

  • Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    Article  CAS  PubMed  Google Scholar 

  • Türck L (1849) Mikroskopischer Befund des Rückenmarkes eines paraplegischen Weibes. Z Kais Kön Ges Ärzte Wien 5:173–176

    Google Scholar 

  • Türe U, Yaşargil MG, Pait TG (1997) Is there a superior occipitofrontal fasciculus? A microsurgical anatomic study. Neurosurgery 40:1226–1232

    Article  PubMed  Google Scholar 

  • Türe U, Yaşargil DC, Al-Mefty O, Yaşargil MG (1999) Topographic anatomy of the insular region. J Neurosurg 90:720–733

    Article  PubMed  Google Scholar 

  • Türe U, Yaşargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–427

    Article  PubMed  Google Scholar 

  • Ugolini G, Kuypers HGJM, Simmons A (1987) Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV1) from motoneurons. Brain Res 422:242–256

    Article  CAS  PubMed  Google Scholar 

  • Usunoff KG, Marani E, Schoen JHR (1997) The trigeminal system in man. Adv Anat Embryol Cell Biol 136:1–126

    Article  Google Scholar 

  • Valverde F (1970) The Golgi method. A tool for comparative structural analyses. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin/Heidelberg/New York, pp 12–31

    Chapter  Google Scholar 

  • Van Buren JM (1963a) The retinal ganglion cell layer. Thomas, Springfield

    Google Scholar 

  • Van Buren JM (1963b) Transsynaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 26:402–409

    Article  PubMed Central  Google Scholar 

  • van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cog Sci 17:683–696

    Article  Google Scholar 

  • van den Heuvel MP, Sporns O (2019) A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci 20:435–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W et al (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiat 70:783–792

    Article  Google Scholar 

  • van den Heuvel MP, de Reus MA, Feldman Barrett L, Scholtens LH, Coopmans FM, Schmidt R et al (2015) Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome. Hum Brain Mapp 36:3064–3075

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Bullmore ET, Sporns O (2016) Comparative connectomics. Trends Cogn Sci 20:345–361

    Article  PubMed  Google Scholar 

  • van Domburg PHMF, ten Donkelaar HJ (1991) The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging diseases. Adv Anat Embryol Cell Biol 121:1–132

    Article  PubMed  Google Scholar 

  • Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012) Parcellation and hemispheric asymmetries of human cerebral cortex analysed on surface-based atlases. Cereb Cortex 22:2241–2262

    Article  PubMed  Google Scholar 

  • Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179

    Article  CAS  PubMed  Google Scholar 

  • Veenman CL, Reiner A, Honig MC (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:239–244

    Article  CAS  PubMed  Google Scholar 

  • Veniero D, Bortoletto M, Miniussi C (2009) TMS-EEG co-registration: on TMS-induced artifact. Clin Neurophysiol 120:1392–1399

    Article  PubMed  Google Scholar 

  • von Gudden B (1870) Experimentaluntersuchungen über das peripherische und centrale Nervensystem. Arch Psychiatr 2:693–724

    Article  Google Scholar 

  • Voogd J, Feirabend HKP, Schoen JHR (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 321–386

    Chapter  Google Scholar 

  • Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 23:77–87

    Article  Google Scholar 

  • Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Phil Trans 140:423–469

    Article  Google Scholar 

  • Walsh FB (1947) Clinical neuro-ophthalmology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenetic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandell BA (2016) Clarifying human white matter. Annu Rev Neurosci 39:103–128

    Article  CAS  PubMed  Google Scholar 

  • Wandell BA, Yeatman JD (2013) Biological development of reading circuits. Curr Opin Neurobiol 23:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Pathak S, Stefaneanu L, Yeh F-C, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 22:2075–2092

    Article  CAS  Google Scholar 

  • Wassermann EM, Lisbanby SH (2001) Therapeutic application of repetitive transcranial stimulation: a review. Clin Neurophysiol 112:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Non-invasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  • Weigert C (1884) Ausführliche Beschreibung der in No. 2 dieser Zeitschrift erwähnten neuen Färbungsmethode für das Centralnervensystem. Fortschr Med 2:190–191

    Google Scholar 

  • Weil AA (1928) A rapid method for staining myelin sheaths. Arch Neurol Psychiatr 20:392–393

    Article  Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–395

    Article  CAS  PubMed  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motor cortical inhibition induced by blockade of GABA uptake in humans. J Physiol Lond 517:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65:733–739

    Article  CAS  PubMed  Google Scholar 

  • Woelcke M (1942) Eine neue Methode der Markscheidenfärbung. J Physiol Neurol 51:199–202

    Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51:476–506

    Article  CAS  PubMed  Google Scholar 

  • Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K (2014) A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. J Neurosci Meth 235:331–348

    Article  Google Scholar 

  • Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA (2012) Development of white matter and reading skills. Proc Natl Acad Sci U S A 109:E3045–E3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh F-C, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC et al (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178:57–68

    Article  PubMed  Google Scholar 

  • Zeineh MM, Palomero-Gallagher N, Axer M, Gräβel D, Goubron M, Wree A et al (2017) Direct visualization and mapping of the spatial course of fiber tracts at microscopic resolution in the human hippocampus. Cereb Cortex 27:1779–1794

    PubMed  Google Scholar 

  • Zhou J, Seeley WW (2014) Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry. Biol Psychiatry 75:565–573

    Article  PubMed  Google Scholar 

  • Zhou J, Greicius MD, Gennatas ED, Growden ME, Jang JY, Rabinovici GD et al (2010) Divergent network connectivity changes in behavioural versus frontotemporal dementia and Alzheimer’s disease. Brain 133:1353–1367

    Google Scholar 

  • Ziemann U (2003) Pharmacology of TMS. Suppl Clin Neurophysiol 56:226–231

    Article  PubMed  Google Scholar 

  • Zilles K (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat (Lond) 187:515–537

    CAS  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2017) Multiple transmitter receptors in regions and layers of the human cerebral cortex. Front Neuroanat 11:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic Press, San Diego, pp 573–602

    Chapter  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat (Lond) 205:417–432

    Article  CAS  Google Scholar 

  • Zilles K, Bacha-Tranes M, Palomero-Gallagher N, Amunts K, Friederici AD (2015) Common molecular basis of the sentence comprehensive network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Gräβel D, Schlömer P, Cremer M, Woods R et al (2016) High-resolution fiber and fiber tract imaging using polarized light microscopy in the human, monkey, rat, and mouse brain. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 369–389

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ten Donkelaar, H.J., Doorduin, J., Catani, M., van den Heuvel, M.P. (2020). Notes on Techniques. In: Clinical Neuroanatomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41878-6_3

Download citation

Publish with us

Policies and ethics