Skip to main content

The Limbic System

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

The term “limbic” was first used in 1664 by Thomas Willis to describe the cortical structures on the medial side of the cerebral hemisphere, surrounding the brain stem. Two centuries later, Paul Broca noticed that the cingulate gyrus and the parahippocampal gyrus form a border (limbus) around the corpus callosum and the brain stem. Broca subdivided his grand lobe limbique into inner (the hippocampus) and outer (the cingulate and parahippocampal gyri) rings. During the last decades of the nineteenth century and the first decades of the twentieth century, it was generally believed that most if not all structures of Broca’s limbic lobe were dominated by olfactory input and therefore form part of the rhinencephalon. In 1937, James Papez proposed that these structures are involved in a closed circuit. The circuit of Papez includes projections from the hippocampus via the fornix to the mamillary body and then via the mamillothalamic tract of Vicq d’Azyr to the anterior thalamic nucleus, from here to the cingulate gyrus, and as last step from the cingulate gyrus back to the hippocampus. Papez suggested that his circuit formed the anatomical basis for emotions. In 1952, Paul MacLean included the circuit of Papez with the amygdala and the hypothalamus into his limbic system, supposed to be responsible for emotional behaviour (the “visceral” or “emotional” brain). Lennart Heimer promoted an expanded version of the classic limbic lobe of Broca, which contains all non-isocortical parts of the cerebral hemisphere together with the laterobasal-cortical amygdaloid complex, with several output channels in the basal forebrain. Thus defined, the limbic lobe contains all of the major cortical and amygdaloid structures known to be especially important for emotional and behavioural functions. Experimental studies in the early 1970s identified the output channels of the limbic lobe in the basal forebrain as the ventral striatopallidal system, the extended amygdala and the basal nucleus of Meynert.

Both the amygdala and the hippocampal formation are involved in memory processing and memory disorders. Almost all severe amnesias occur after bilateral involvement of limbic structures. Association and limbic structures suffer the blunt of damage in dementia. In this chapter, following a brief discussion of the concept of the limbic system (► Sect. 14.2); the olfactory system (► Sect. 14.3); the basal forebrain (► Sect. 14.4); the amygdala (► Sect. 14.5); neuropsychiatric disorders such as schizophrenia (► Sect. 14.6) in which the amygdala, among other structures, is involved; the hippocampus (► Sect. 14.7); and memory and memory disorders (► Sect. 14.8) will be discussed. ► Section 14.9 includes a survey of the neuroanatomical basis of memory impairment in Alzheimer’s disease. The English terms of the Terminologia Neuroanatomica are used throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abrahams VC, Hilton SM, Malcolm JL (1962) Sensory connections to the hypothalamus and midbrain, and their role in the reflex activation of the defence reaction. J Physiol Lond 164:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adolphs R (2008) Fear, faces, and the human amygdala. Curr Opin Neurobiol 18:166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adolphs R, Tranel D (2000) Emotion, recognition, and the human amygdala. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 587–630

    Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio AR (1995) Fear and the human amygdala. J Neurosci 15:5879–5891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adolphs R, Tranel D, Hamann S, Young AW, Calder AJ, Phelps EA et al (1999) Recognition of facial emotion in nine subjects with bilateral amygdala damage. Neuropsychologia 37:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP (1992) The functional effects of amygdala lesions in humans: a comparison with findings from monkeys. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental functions. Wiley-Liss, New York, pp 485–504

    Google Scholar 

  • Aggleton JP (1993) The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci 16:328–333

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Mishkin M (1983a) Visual recognition impairment following medial thalamic lesions in monkeys. Neuropsychologia 21:189–197

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Mishkin M (1983b) Memory impairment following restricted medial thalamic lesions in monkeys. Exp Brain Res 52:199–209

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Mishkin M (1984) Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 222:56–68

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Mishkin M (1985) Mammillary-body lesions and visual recognition in the monkey. Exp Brain Res 58:190–197

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Saunders RC (2000) The amygdala – what’s happened in the last decade? In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 1–30

    Google Scholar 

  • Aggleton JP, Burton MJ, Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–368

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Pralus A, Nelson AJD, Hornberger M (2016) Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit. Brain 139:1877–1890

    Article  PubMed  PubMed Central  Google Scholar 

  • Aletrino MA, Vogels OJM, van Domburg PHMF, ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13:461–468

    Article  CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    Article  CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L, Switzer RC (1990) Basal ganglia. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 483–582

    Chapter  Google Scholar 

  • Alheid GF, de Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 495–578

    Google Scholar 

  • Allison AC (1954) The secondary olfactory areas in the human brain. J Anat (Lond) 88:481–488

    CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiatr Psych-Gerichtl Med 64:146–148

    Google Scholar 

  • Amaral DG (1978) A Golgi study of the cell types of the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–915

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG (1986) Amygdalohippocampal and amygdalocortical projections in the primate brain. In: Ben-Ari Y, Schwarcz R (eds) Excitatory amino acids and epilepsy. Plenum, New York, pp 3–17

    Chapter  Google Scholar 

  • Amaral DG (1987) Memory: anatomical organization of candidate brain regions. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Vol V: Higher functions of the nervous system. American Physiological Society, Bethesda, pp 211–294

    Google Scholar 

  • Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 711–755

    Chapter  Google Scholar 

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230:465–496

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Witter M (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1984) The commissural connections of the monkey hippocampal formation. J Comp Neurol 224:307–336

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex in the monkey. I Cytoarchitectonic organization. J Comp Neurol 264:326–355

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1–66

    Google Scholar 

  • Amaral DG, Behniea H, Kelly JL (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118:1099–1120

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145

    Article  CAS  PubMed  Google Scholar 

  • Ameis SH, Catani M (2015) Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorders. Cortex 62:158–181

    Article  PubMed  Google Scholar 

  • Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg P, Shah NJ et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352

    Article  CAS  Google Scholar 

  • Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of the hippocampal excitatory pathways. Exp Brain Res 13:222–238

    CAS  PubMed  Google Scholar 

  • Andersen P, Soleng AF, Raastad M (2000) The hippocampal lamella hypothesis revisited. Brain Res 886:165–171

    Article  CAS  PubMed  Google Scholar 

  • Annese J, Schenker-Ahmed NM, Bartich H, Maechler P, Sheh C, Thomas N et al (2014) Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction. Nat Commun 5:3122

    Article  PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108

    Article  CAS  Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  CAS  PubMed  Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992a) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    Article  CAS  PubMed  Google Scholar 

  • Arriagada PV, Marzloff K, Hyman BT (1992b) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Ashwell KWS, Waite PME (2004) Development of the peripheral nervous system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 95–110

    Chapter  Google Scholar 

  • Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol (Berl) 127:459–475

    Article  CAS  Google Scholar 

  • Augustinack JC, Helmer K, Huber KE, Kakunoori S, Zöllei L, Fischl B (2010) Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging. Front Hum Neurosci 4:1–13

    Google Scholar 

  • Augustinack JC, Huber KE, Stevens AA, Roy M, Frosch MP, van der Kouwe AJW et al (2013) Predicting the location of human perirhinal cortex, Brodmann’s area 35, from MRI. NeuroImage 64:32–42

    Article  PubMed  Google Scholar 

  • Augustinack JC, Magnain C, Reuter M, van der Kouwe AJW, Boas D, Fischl B (2014a) MRI parcellation of ex vivo medial temporal lobe. NeuroImage 93:252–259

    Article  PubMed  Google Scholar 

  • Augustinack JC, van der Kouwe AJ, Salat DH, Benner T, Stevens AA, Annese J et al (2014b) H.M.’s contribution to neuroscience: a review and autopsy studies. Hippocampus 24:1267–1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH (1984) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25:721–728

    Article  CAS  PubMed  Google Scholar 

  • Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF (1991) Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42:351–363

    Article  CAS  PubMed  Google Scholar 

  • Bachevalier J (2000) The amygdala, social behaviour, and autism. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 509–543

    Google Scholar 

  • Bailey A, Luthert P, Dean A, Harding B, Janota M, Montgomery M et al (1998) A clinicopathological study of autism. Brain 121:889–905

    Article  PubMed  Google Scholar 

  • Baleydier C, Mauguière F (1980) The duality of the cingulate gyrus in the monkey. Neuroanatomical study and functional hypothesis. Brain 103:525–554

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511–533

    Article  CAS  PubMed  Google Scholar 

  • Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, O’Brien JT (1999) Medial temporal lobe atrophy on MRI in dementia with Lewy bodies. Neurology 52:1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Barkhof F, Polvikoski TM, van Straaten ECW, Kalaria RN, Sulkava R, Aronen HJ et al (2007) The significance of medial temporal lobe atrophy. A postmortem MRI study in the very old. Neurology 69:1521–1527

    Article  CAS  PubMed  Google Scholar 

  • Bartus RI, Dean RL, Beer B, Lippa S (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA (1980) Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J Comp Neurol 194:845–875

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1987) Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog Neurobiol 29:57–106

    Article  CAS  PubMed  Google Scholar 

  • Beaujoin J, Palomero-Gallagher N, Boumezbeur F, Axer M, Bernard J, Poupon F et al (2018) Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T. Brain Struct Funct 223:2157–2179

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker T, Elmer K, Mechela B, Schneider F, Taubert S, Schroth G et al (1990) MRI findings in medial temporal lobe structures in schizophrenia. Eur Neuropsychopharmacol 1:83–86

    Article  CAS  PubMed  Google Scholar 

  • Benson DF, Marsden CD, Meadows JL (1974) The amnesic syndrome of posterior cerebral artery occlusion. Acta Neurol Scand 50:133–145

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum R, Weinberger DR (2017) Genetic insights into the neurodevelopmental origin of schizophrenia. Nat Rev Neurosci 18:727–740

    Article  CAS  PubMed  Google Scholar 

  • Blackstad TW (1956) Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105:417–537

    Article  CAS  PubMed  Google Scholar 

  • Blatt GJ, Rosene DL (1998) Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392:92–114

    Article  CAS  PubMed  Google Scholar 

  • Blümcke I, Zuschratter W, Schewe J-C, Suter B, Lie AA, Riederer BM et al (1999) Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J Comp Neurol 414:437–453

    Article  PubMed  Google Scholar 

  • Blümcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211

    PubMed  Google Scholar 

  • Blumer D, Wakhlu S, Davies K, Hermann B (1998) Psychiatric outcome of temporal lobectomy for epilepsy: incidence and treatment of psychiatric complications. Epilepsia 39:478–486

    Article  CAS  PubMed  Google Scholar 

  • Boets B, Van Eylen L, Sitek K, Moors P, Noens L, Steyaert J et al (2018) Alterations in the inferior longitudinal fasciculus in autism and associations with visual processing: a diffusion-weighted MRI study. Mol Autism 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogerts B, Meertz E, Schönfeldt-Bausch R (1985) Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42:784–791

    Article  CAS  PubMed  Google Scholar 

  • Bogerts B, Falkai P, Greve B, Schneider T, Pfeiffer U (1993a) The neuropathology of schizophrenia: past and present. J Hirnforsch 34:193–205

    CAS  PubMed  Google Scholar 

  • Bogerts B, Lieberman JA, Ashtari M, Bilder RM, DeGreef G, Lerner G et al (1993b) Hippocampus-amygdala volumes and psychopathology in chronic schizophrenia. Biol Psychiatry 33:236–246

    Article  CAS  PubMed  Google Scholar 

  • Bogousslavsky J, Regli F, Uske A (1988) Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology 38:837–848

    Article  CAS  PubMed  Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  • Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol (Berl) 92:197–201

    Article  CAS  Google Scholar 

  • Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2015a) Neuroanatomy and pathology of sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol 215:1–162

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2015b) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138:2814–2833

    Article  PubMed  Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol (Berl) 88:493–500

    Article  CAS  Google Scholar 

  • Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzheimer’s Res 3:235–247

    Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Brabec J, Rulseh A, Pala A, Guerreiro H, Busková J, Petrovický P et al (2011) Volume of the amygdala is reduced in patients with narcolepsy – a structural MRI study. Biol Psychiatry 32(5):652–656

    Google Scholar 

  • Brady DR, Mufson EJ (1990) Amygdaloid pathology in Alzheimer’s disease: qualitative and quantitative analysis. Dementia 1:5–17

    Google Scholar 

  • Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brion S, Mikol J (1978) Atteinte du noyau latéral dorsal du thalamus et syndrome de Korsakoff alcoolique. J Neurol Sci 38:249–261

    Article  CAS  PubMed  Google Scholar 

  • Broca P (1878) Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans le série des mammifères. Rev Antropol, 2e série 1:385–498

    Google Scholar 

  • Brockhaus H (1938) Zur normalen und pathologischen Anatomie des Mandelkerngebietes. J Psychol Neurol (Lpz) 49:1–136

    Google Scholar 

  • Brockhaus H (1942) Vergleichend-anatomische Untersuchungen über den Basalkernkomplex. J Psychol Neurol (Lpz) 51:57–95

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig; English translation by LJ Garey (1999) Brodmann’s localisation in the cerebral cortex. Imperial College Press, London

    Google Scholar 

  • Broks P, Young AW, Maratos EJ, Coffey PJ, Calder AJ, Isaac C et al (1998) Face processing impairments after encephalitis: amygdala damage and recognition of fear. Neuropsychologia 36:59–70

    Article  CAS  PubMed  Google Scholar 

  • Brun A, Gustafson L (1976) Distribution of cerebral degeneration in Alzheimer’s disease. Acta Psychiatr Nervenkr 223:15–33

    Article  CAS  Google Scholar 

  • Bruton CJ (1988) The neuropathology of temporal lobe epilepsy. Oxford University Press, New York

    Google Scholar 

  • Burdach KF (1819–1826) Vom Baue und Leben des Gehirns. Dyk, Leipzig (3 vols)

    Google Scholar 

  • Burmeister M, McInnis MG, Zöllner S (2008) Psychiatric genetics: progress amid controversy. Nat Rev Genet 9:527–540

    Article  CAS  PubMed  Google Scholar 

  • Burwell RD, Amaral DG (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205

    Article  CAS  PubMed  Google Scholar 

  • Burwell RD, Witter MP (2002) Basic anatomy of the parahippocampal region in monkeys and rats. In: Witter M, Wouterlood F (eds) The parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 35–59

    Google Scholar 

  • Cabeza R, Ciaramelli E, Olson IR, Moscovitch M (2008) The parietal cortex and episodic memory: an attentional account. Nat Rev Neurosci 9:613–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callen DJ, Black SE, Gao F, Caldwell CB, Szalai JP (2001) Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD. Neurology 57:1669–1674

    Article  CAS  PubMed  Google Scholar 

  • Carlsen J, Záborsky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST, Clugnet MC, Price JL (1994) Central olfactory connections in the macaque monkey. J Comp Neurol 346:403–434

    Article  CAS  PubMed  Google Scholar 

  • Carrera E, Bogousslavsky J (2006) The thalamus and behavior. Effects of anatomically distinct strokes. Neurology 66:1817–1823

    Article  PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden D, Switala AE, Roy E (2002) Minicolumnar pathology in autism. Neurology 58:428–432

    Article  PubMed  Google Scholar 

  • Casanova MF, van Kooten IMJ, Switala AE, van Engeland H, Heinsen H, Steinbusch HWM et al (2006) Minocolumnar abnormalities in autism. Acta Neuropathol (Berl) 112:287–303

    Article  Google Scholar 

  • Catani M, Dell’Acqua F, Thiebaut de Schotten M (2013) A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 37:1724–1727

    Article  PubMed  Google Scholar 

  • Cavanagh JB, Falconer MA, Meyer A (1958) Some pathogenetic problems of temporal lobe epilepsy. In: Baldwin M, Bailey P (eds) Temporal lobe epilepsy. Thomas, Springfield, pp 140–148

    Google Scholar 

  • Chow TW, Cummings JL (2000) The amygdala and Alzheimer’s disease. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 655–680

    Google Scholar 

  • Christiansen K, Metzler-Baddeley C, Parker GD, Muhlert N, Jones DK, Aggleton JP, Vahn SD (2016) Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: an MRI-diffusion study. Brain Behav 7:e00604

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrobak JJ, Amaral DG (2007) Entorhinal cortex of the monkey. VII Intrinsic connections. J Comp Neurol 500:612–633

    Article  PubMed  Google Scholar 

  • Chronister RB, Sikes RW, White LE (1975) Postcommissural fornix: origin and distribution in a rodent. Neurosci Lett 1:199–202

    Article  Google Scholar 

  • Collins G, Scholtens LH, Kahn RS, Hillegers MHJ, van den Heuvel MP (2017) Affectedanatomical rich club and structural-functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biol Psychiatry 82:746–755

    Article  Google Scholar 

  • Conrad LC, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei of the rat: an autoradiographic and degeneration study. J Comp Neurol 156:179–206

    Article  CAS  PubMed  Google Scholar 

  • Consensus Report (1998) Consensus report of the working group on “molecular and biochemical markers of Alzheimer’s disease”. Neurobiol Aging 19:109–116

    Article  Google Scholar 

  • Coote JH, Hilton SM, Zbrozyna AW (1973) The pontomedullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J Physiol Lond 229:257–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol 4:249–259

    Article  Google Scholar 

  • Corkin S, Amaral DG, González RG, Johnson KA, Hyman BT (1997) H.M.’s Medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci 17:3964–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff JA et al (2014) Primary age-related neuropathy associated with human aging. Acta Neuropathol (Berl) 128:755–766

    Article  CAS  Google Scholar 

  • Crosby EC, Humphrey T (1941) Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J Comp Neurol 74:309–352

    Article  Google Scholar 

  • Cummings JL, Tomiyasu U, Read S, Benson DF (1984) Amnesia with hippocampal lesions after cardiopulmonary arrest. Neurology 34:679–681

    Article  CAS  PubMed  Google Scholar 

  • Daitz HM, Powell TPS (1954) Studies of the connexions of the fornix system. J Neurol Neurosurg Psychiatry 17:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damasio AR, Eslinger PJ, Damasio H, Van Hoesen GW, Cornell S (1985a) Multimodal amnesic syndrome following bilateral temporal and basal forebrain damage. Arch Neurol 42:252–259

    Article  CAS  PubMed  Google Scholar 

  • Damasio AR, Graff-Radford NR, Eslinger PJ, Damasio H, Kassell N (1985b) Amnesia following basal forebrain lesions. Arch Neurol 42:263–271

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992a) The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 255–306

    Google Scholar 

  • Davis M (1992b) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  CAS  PubMed  Google Scholar 

  • de Lacalle S, Saper CB (2000) Calcitonin gene-related peptide-like immunoreactivity marks putative visceral sensory pathways in human brain. Neuroscience 100:115–130

    Article  PubMed  Google Scholar 

  • de Lacalle S, Lim C, Sobreviela T, Mufson EJ, Hersh LB, Saper CB (1994) Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. J Comp Neurol 345:321–344

    Article  PubMed  Google Scholar 

  • de Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687

    Article  PubMed  Google Scholar 

  • de Olmos J (1972) The amygdaloid projection field in the rat as studied with the cupric-silver method. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 145–204

    Chapter  Google Scholar 

  • de Olmos J (2004) Amygdala. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 739–868

    Chapter  Google Scholar 

  • de Olmos J, Ingram WR (1972) The projection fields of the stria terminalis in the rat brain. An experimental study. J Comp Neurol 146:303–334

    Article  PubMed  Google Scholar 

  • Delacourte A, David JP, Sergeant N, Buee L, Watter A, Vermersch P et al (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52:1158–1165

    Article  CAS  PubMed  Google Scholar 

  • Demeter S, Rosene DL, Van Hoesen GW (1985) Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 233:30–47

    Article  CAS  PubMed  Google Scholar 

  • Demeter S, Rosene DL, Van Hoesen GW (1990) Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques. J Comp Neurol 302:29–53

    Article  CAS  PubMed  Google Scholar 

  • deToledo-Morrell L, Sullivan MP, Morrell F, Wilson RS, Bennett DA, Spencer S (1997) Alzheimer’s disease: in vivo detection of differential vulnerability of brain regions. Neurobiol Aging 18:463–468

    Article  CAS  PubMed  Google Scholar 

  • deToledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S et al (2004) MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 25:1197–1203

    Article  PubMed  Google Scholar 

  • deToledo-Morrell L, Stoub TR, Wang C (2007) Hippocampal atrophy and disconnection in incipient and mild Alzheimer disease. Prog Brain Res 163:741–753

    Article  PubMed  Google Scholar 

  • Di Ieva A, Tsabitscher M, Rodriguez y Baena R (2007) Lancisi’s nerves and the seat of the soul. Neurosurgery 60:563–568

    Article  PubMed  Google Scholar 

  • Di Ieva A, Fathalla H, Cusimano MD, Tsabitscher M (2015) The indusium griseum and the longitudinal striae of the corpus callosum. Cortex 62:34–40

    Article  PubMed  Google Scholar 

  • Ding S-L (2013) Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum. J Comp Neurol 521:4145–4162

    Article  PubMed  Google Scholar 

  • Ding S-L, Van Hoesen GW (2010) Borders, extent, and topography of human perirhinal cortex as revealed using modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359–1379

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding S-L, Van Hoesen GW, Rockland K (2000) Inferior parietal lobule projections to the presubiculum and neighbouring ventromedial temporal cortical areas. J Comp Neurol 425:510–530

    Article  CAS  PubMed  Google Scholar 

  • Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brainstem and olfactory bulb. Review of some functional correlates. Brain Res 93:385–398

    Article  CAS  PubMed  Google Scholar 

  • Dolan RJ (2000) Functional neuroimaging of the human amygdala during emotional processing and learning. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 631–653

    Google Scholar 

  • Dong H-W, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Rev 38:192–246

    Article  CAS  PubMed  Google Scholar 

  • Doty RL, Shaman P, Applebaum SL, Giberson R, Sikorski L, Rosenberg L (1984) Smell identification ability: changes with age. Science 226:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Druga R (1970) Neocortical projections on the amygdala (an experimental study with the Nauta method). J Hirnforsch 11:467–476

    CAS  Google Scholar 

  • Dudek FE, Sutula TP (2007) Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 163:755–773

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, Toledo AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562

    Article  CAS  PubMed  Google Scholar 

  • Dusoir H, Kapur N, Brynes DP, McKinstry S, Hoare RD (1990) The role of diencephalic pathology in human memory disorder. Brain 113:1695–1706

    Article  PubMed  Google Scholar 

  • Duvernoy HM (1998) The human Hippocampus. Functional anatomy, vascularization and serial sections with MRI, 2nd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Elliot Smith G (1897) The morphology of the indusium griseum and striae Lancisii. Anat Anz 13:23–37

    Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988) Limbic pathology in schizophrenia: the entorhinal region – a morphometric study. Biol Psychiatry 24:515–521

    Google Scholar 

  • Falkai P, Schneider-Axmann T, Honer WG (2000) Entorhinal cortex pre-alpha clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 47:937–943

    Article  CAS  PubMed  Google Scholar 

  • Filimonoff IN (1947) A rational subdivision of the cerebral cortex. Arch Neurol Psychiatr 58:296–311

    Article  CAS  Google Scholar 

  • Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magn Reson Imaging 7:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Foxe JJ, Molholm S, Baudouin J, Wallace MT (2018) Editorial: explorations and perspectives on the neurobiological bases of autism spectrum disorder. Eur J Neurosci 47:488–496

    Article  PubMed  Google Scholar 

  • Freese JL, Amaral DG (2005) The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 486:295–317

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Frisoni GB, Ganzola R, Canu E, Rüb U, Pizzini FB, Alessandrini F et al (2008) Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 tesla. Brain 131:3266–3276

    Article  PubMed  Google Scholar 

  • Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN (2002) Amygdaloid projections to ventromedial striatal territories in the primate. Neuroscience 110:257–275

    Article  CAS  PubMed  Google Scholar 

  • Gaffan D, Gaffan EA (1991) Amnesia in man following transection of the fornix: a review. Brain 114:2611–2618

    Article  PubMed  Google Scholar 

  • Garcia-Sierra F, Hauw JJ, Duyckaerts C, Wischik CM, Munoz J, Mena R (2000) The extent of neurofibrillary pathology in the perforant pathway neurons is the key determinant of dementia in the very old. Acta Neuropathol (Berl) 100:29–35

    Article  CAS  Google Scholar 

  • Garcia-Sierra F, Wischik CM, Harrington CR, Luna-Munoz J, Mena R (2001) Accumulation of C-terminally truncated tau protein associated with vulnerability of the perforant pathway in early stages of neurofibrillary pathology in Alzheimer’s disease. J Chem Neuroanat 22:65–77

    Article  CAS  PubMed  Google Scholar 

  • Gastaut H, Lammers HJ (1961) Anatomie du rhinencéphale. Masson, Paris

    Google Scholar 

  • German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21:305–312

    Article  CAS  PubMed  Google Scholar 

  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279

    Article  CAS  PubMed  Google Scholar 

  • Glees P, Griffith HB (1952) Bilateral destruction of the hippocampus (Cornu Ammonis) in a case of dementia. Psychiatr Neurol Med Psychol (Lpz) 123:193–204

    Article  CAS  Google Scholar 

  • Gloor P, Salanova V, Olivier A, Quesnay LF (1993) The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway. Brain 116:1249–1273

    Article  PubMed  Google Scholar 

  • Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210

    Article  CAS  PubMed  Google Scholar 

  • Gold G, Bouras C, Kovari E, Canuto A, González-Glaria B, Malki A et al (2000) Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol (Berl) 99:579–582

    Article  CAS  Google Scholar 

  • Gómez-Isla T, Hyman BT (1997) Connections and cognitive impairment in Alzheimer’s disease. In: Hyman BT, Duyckaerts C, Christen Y (eds) Connections, cognition, and Alzheimer’s disease. Springer, Berlin/Heidelberg/New York, pp 149–166

    Chapter  Google Scholar 

  • Gómez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    Article  PubMed  PubMed Central  Google Scholar 

  • Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA (2002) Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 58:1476–1482

    Article  CAS  PubMed  Google Scholar 

  • Grabowski TJ, Damasio AR (2004) Definition, clinical features and neuroanatomical basis of dementia. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 1–33

    Google Scholar 

  • Graff-Radford NR, Tranel D, Van Hoesen GW, Brandt JP (1990) Diencephalic amnesia. Brain 113:1–25

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Room P, Witter M, Lohman AHM (1982) Cortical afferents of the nucleus accumbens studied with anterograde and retrograde transport techniques. Neuroscience 7:977–995

    Article  CAS  PubMed  Google Scholar 

  • Gruner JE (1956) Sur la pathologie des encéphalopathies alcooliques. Rev Neurol (Paris) 94:682–689

    CAS  Google Scholar 

  • Grünthal E (1939) Ueber das Corpus mamillare und den Korsakowschen Symptomenkomplex. Confin Neurol (Basel) 2:65–95

    Google Scholar 

  • Grünthal E (1947) Ueber das klinische Bild nach umschriebenem beiderseitigem Ausfall der Ammonshornrinde. Monatsschr Psychiatr Neurol 113:1–36

    Article  PubMed  Google Scholar 

  • Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10:325–362

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanover M, Meldrum BS (1996) Epilepsy. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 931–971

    Google Scholar 

  • Harding A, Halliday G, Caine D, Kril J (2000) Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123:141–154

    Article  PubMed  Google Scholar 

  • Harding A, Stimson E, Henderson JM, Halliday GM (2002) Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 125:2431–2445

    Article  PubMed  Google Scholar 

  • Heimer L (1969) The secondary olfactory connections in mammals, reptiles and sharks. Ann N Y Acad Sci 167:129–146

    Article  Google Scholar 

  • Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31:205–235

    Article  CAS  PubMed  Google Scholar 

  • Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behaviour. Neuroscience Biobehav Rev 30:126–147

    Article  Google Scholar 

  • Heimer L, Van Hoesen GW, Rosene DL (1977) The olfactory pathways and the anterior perforated substance in the primate brain. Int J Neurosci 12:42–52

    Google Scholar 

  • Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87

    Article  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Zaborsky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165

    Article  CAS  PubMed  Google Scholar 

  • Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997a) The accumbens: beyond the core-shell dichotomy. J Neuropsychiat Clin Neurosci 9:354–381

    Article  CAS  Google Scholar 

  • Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997b) Substantia innominata: a notion which impedes clinico-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006

    Article  CAS  PubMed  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Pearson J, Sakamoto N, Marksteiner J, Switzer RC (1999) The human basal forebrain, part 2. Handb Chem Neuroanat 15:57–226

    Article  Google Scholar 

  • Heimer L, Van Hoesen GW, Trimble M, Zahm DS (2008) Anatomy of neuropsychiatry. Elsevier, Amsterdam

    Google Scholar 

  • Herzog AG, Van Hoesen GW (1976) Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115:57–69

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt H, Muller S, Bussmann-Mork B, Goebel S, Eilers N (2001) Are some memory deficits unique to lesions of the mammillary bodies? J Clin Exp Neuropsychol 23:490–501

    Article  CAS  PubMed  Google Scholar 

  • Hilton SM, Zbrozyna AW (1963) Amygdaloid region for defence reactions and its efferent pathways to the brainstem. J Physiol Lond 165:160–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hof PR, Bierer LM, Perl DP, Delacourte A, Buee L, Bouras C, Morrison JH (1992) Evidence for early vulnerability of the medial and inferior aspects of the temporal lobe in an 82-year-old patient with preclinical signs of dementia. Regional and laminar distribution of neurofibrillary tangles and senile plaques. Arch Neurol 49:946–953

    Article  CAS  PubMed  Google Scholar 

  • Hogan RE, Mark KE, Wang L, Joshi S, Miller MI, Bucholz RD (2000) Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients. Radiology 216:291–297

    Article  CAS  PubMed  Google Scholar 

  • Holstege G (1992) The emotional motor system. Eur J Morphol 30:67–79

    CAS  PubMed  Google Scholar 

  • Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 58:379–391

    Article  CAS  PubMed  Google Scholar 

  • Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1306–1324

    Chapter  Google Scholar 

  • Hopkins DA (1975) Amygdalotegmental projections in the rat, cat and rhesus monkey. Neurosci Lett 1:263–270

    Article  CAS  PubMed  Google Scholar 

  • Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–548

    Article  CAS  PubMed  Google Scholar 

  • Horel JA (1978) The neuroanatomy of amnesia: a critique of the hippocampal memory hypothesis. Brain 101:403–445

    Article  CAS  PubMed  Google Scholar 

  • Hori A (1997) Anatomical variants of brain structure: confused spatial relationship of the fornix to the corpus callosum and anterior commissure. Ann Anat 179:545–547

    Article  CAS  PubMed  Google Scholar 

  • Hori A, Stan AC (2004) Supracallosal longitudinal fibre bundle: heterotopic cingulum, dorsal fornix or Probst bundle? Neuropathology 24:56–59

    Article  PubMed  Google Scholar 

  • Hořinek D, Petrovický P, Hort J, Krasensky J, Brabec J, Bojar M et al (2005) Amygdalar volume and psychiatric symptoms in Alzheimer’s disease: an MRI analysis. Acta Neurol Scand 113:40–45

    Article  Google Scholar 

  • Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535:195–204

    Article  CAS  PubMed  Google Scholar 

  • Houser CR, Miyahashi JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV (1990) Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10:267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houser CR, Swartz BE, Walsh GO, Delgado-Escueta AV (1992) Granule cell disorganization in the dentate gyrus: possible alterations of neuronal migration in human temporal lobe epilepsy. Epilepsy Res Suppl 9:41–48

    CAS  PubMed  Google Scholar 

  • Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 33:622–631

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Trojanowski JQ (1997) Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer’s disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the Neuropathological Assessment of Alzheimer’s disease. J Neuropathol Exp Neurol 56:1095–1097

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20:472–481

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Kromer LJ, Van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450:392–397

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40:1721–1730

    Article  CAS  PubMed  Google Scholar 

  • Hyman BT, Arriagada PV, McKee AC, Ghika J, Corkin S, Growdon JH (1991) The earliest symptoms of Alzheimer’s disease: anatomic correlates. Soc Neurosci Abstr 17:352

    Google Scholar 

  • Hyman BT, Phelphs CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National Institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Insausti R (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3:19–26

    Article  PubMed  Google Scholar 

  • Insausti R, Amaral DG (2008) Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. J Comp Neurol 509:608–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Insausti R, Amaral DG (2012) Hippocampal formation. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 896–942

    Chapter  Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987a) The entorhinal cortex of the monkey. II Cortical afferents. J Comp Neurol 264:356–395

    Article  CAS  PubMed  Google Scholar 

  • Insausti R, Amaral DG, Cowan WM (1987b) Ibid. III. Subcortical afferents. J Comp Neurol 264:396–408

    Article  CAS  PubMed  Google Scholar 

  • Insausti R, Tuñón T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355:171–198

    Article  CAS  PubMed  Google Scholar 

  • Insausti R, Insausti AM, Sobreviela T, Salinas A, Martínez-Peñuela JM (1998a) Human medial temporal lobe aging: anatomical basis of memory preservation. Microsc Res Techn 43:8–15

    Article  CAS  Google Scholar 

  • Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P et al (1998b) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19:659–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Insausti R, Muñoz-López M, Insausti AM, Artacho-Pérula E (2017) The human periallocortex: layer pattern in presubiculum, parasubiculum and entorhinal cortex. A review. Front Neuroanat 11:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Insausti R, Córcoles-Parada M, Ubero MM, Rodado A, Insausti AM, Muñoz-López M (2019) Cytoarchitectonic areas of the gyrus ambiens in the human brain. Front Neuroanat 13:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Irle E, Markowitsch HJ (1982) Connections of the hippocampal formation, mamillary bodies, anterior thalamus and cingulate cortex. Exp Brain Res 47:79–94

    Article  CAS  PubMed  Google Scholar 

  • Iwai E, Yukie M (1987) Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta and M. fascicularis). J Comp Neurol 261:362–387

    Article  CAS  PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ et al (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51:993–999

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cho RH, O’Brien PC et al (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF et al (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227–1231

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Bennett DA, Blennow K, Carrillo ML, Dunn B, Haeberlein SB et al (2018) NIA-AA research guidelines: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson S, Trojanowski JQ (1975) Amygdaloid projections to prefrontal granular cortex in rhesus monkeys demonstrated with horseradish peroxidase. Brain Res 100:132–139

    Article  CAS  PubMed  Google Scholar 

  • Jafek BW (1983) Ultrastructure of human nasal mucosa. Laryngoscope 93:1576–1599

    Article  CAS  PubMed  Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    Article  CAS  PubMed  Google Scholar 

  • Jakob H, Beckmann H (1994) Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. Pathogenetic and clinical aspects. J Neural Transm 98:83–106

    Article  CAS  Google Scholar 

  • James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139:2983–2993

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Article  Google Scholar 

  • Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR Jr et al (2014) Staging TDP-43 pathology in Alzheimer’s disease. ActaNeuropathol (Berl) 127:441–450

    Article  CAS  Google Scholar 

  • Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L et al (2016) Updated TDP-43 in Alzheimer’s disease staging schema. Ata Neuropathol (Berl) 131:571–585

    Article  CAS  Google Scholar 

  • Juottonen K, Laakso MP, Insausti R, Lehtovirta M, Pitkänen A, Partanen K, Soininen H (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 19:15–22

    Article  CAS  PubMed  Google Scholar 

  • Jürgens U (1982) The hypothalamus and behavioral patterns. Prog Brain Res 41:445–463

    Article  Google Scholar 

  • Kaada BR (1972) Stimulation and regional ablation of the amygdaloid cortex with reference to functional representations. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 205–282

    Chapter  Google Scholar 

  • Kaas JH, Lyon DC (2007) Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev 55:285–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahn EA, Crosby EC (1972) Korsakoff’s syndrome associated with surgical lesions involving the mammillary bodies. Neurology 22:117–125

    Article  CAS  PubMed  Google Scholar 

  • Kallmann FJ, Schoenfeld WA, Barrera SE (1944) The genetic aspects of primary eunuchoidism. Am J Ment Defic 48:203–236

    Google Scholar 

  • Kalus P, Slotboom J, Gallinat J, Mahlberg R, Cattapan-Ludwig K, Wiest R et al (2006) Examining the gateway to the limbic system with diffusion tensor imaging: the perforant pathway in dementia. NeuroImage 30:713–720

    Article  PubMed  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2:217–250

    Google Scholar 

  • Kapur N, Thompson S, Cook P, Lang D, Brice J (1996) Anterograde but not retrograde memory loss following combined mammillary body and medial thalamic lesions. Neuropsychologia 34:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Maeda Y, Urata K, Higashima M, Yamaguchi N, Suzuki M et al (1993) A quantitative magnetic resonance imaging study of patients with schizophrenia. Eur Arch Psychiatr Clin Neurosci 242:268–272

    Article  CAS  Google Scholar 

  • Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde horseradish peroxidase study. Neuroscience 7:2321–2335

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat – an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    Google Scholar 

  • Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11:175–187

    Article  CAS  PubMed  Google Scholar 

  • Khachaturian Z (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol 25:677–691

    PubMed  PubMed Central  Google Scholar 

  • Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic projections to prefrontal and parietal cortex in the rhesus monkey. Science 187:660–662

    Article  CAS  PubMed  Google Scholar 

  • Kile SJ, Ellis WG, Olichney JM, Farias S, DeCarli C (2009) Alzheimer abnormalities of the amygdala with Klüver-Bucy syndrome symptoms. Arch Neurol 66:125–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjaer I, Fischer-Hansen B (1996) The human vomeronasal organ: prenatal developmental stage, and distribution of luteinizing hormone-releasing hormone. Eur J Oral Sci 104:34–40

    Article  CAS  PubMed  Google Scholar 

  • Kling AS, Brothers LA (1992) The amygdala and social behavior. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 353–378

    Google Scholar 

  • Kling AS, Steklis HD, Deutsch S (1979) Radiotelemetered activity from the amygdala during social interactions in the monkey. Exp Neurol 66:688–696

    Article  Google Scholar 

  • Klingler J (1948) Die makroskopische Anatomie der Ammonsformation. Denkschriften der Schweizerischen Naturforschenden Gesellschaft, vol 78. Fretz, Zürich

    Google Scholar 

  • Klüver H, Bucy PC (1937) “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkey. Am J Phys 119:352–353

    Google Scholar 

  • Klüver H, Bucy PC (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatr 42:979–1000

    Article  Google Scholar 

  • Kobayashi Y, Amaral DG (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48–79

    Article  PubMed  Google Scholar 

  • Kobayashi Y, Amaral DG (2007) Ibid. III. Cortical efferents. J Comp Neurol 502:810–833

    Article  PubMed  Google Scholar 

  • Köhler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the midbrain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7:951–975

    Article  PubMed  Google Scholar 

  • Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H et al (2014) Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Nath Acad Sci USA 111:1981–1986

    Article  CAS  Google Scholar 

  • Kondo H, Lavenex P, Amaral DG (2008) Intrinsic connections of the macaque monkey hippocampal formation: I. Dentate gyrus. J Comp Neurol 511:497–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo H, Lavenex P, Amaral DG (2009) Ibid. II. CA3 connections. J Comp Neurol 515:349–377

    PubMed  PubMed Central  Google Scholar 

  • Kordower JH, Piecinski P, Rakic P (1992) Neurogenesis of the amygdaloid nuclear complex in the rhesus monkey. Dev Brain Res 68:9–15

    Article  CAS  Google Scholar 

  • Korsakoff SS (1889) Sur une forme de maladie mentale combinée avec la neurite multiple dégénérative. In: Congrès International de Médecine Mentale. Masson, Paris, pp 75–94; English translation by M Victor, PI Yakovlev (1955) Neurology 5:395–406

    Google Scholar 

  • Kosel KC, Van Hoesen GW, West JR (1981) Olfactory bulb projections to the parahippocampal area of the rat. J Comp Neurol 198:467–482

    Article  CAS  PubMed  Google Scholar 

  • Kosel KC, Van Hoesen GW, Rosene DL (1982) Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213

    Article  CAS  PubMed  Google Scholar 

  • Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N et al (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692

    Article  PubMed  Google Scholar 

  • Krettek JE, Price JL (1974) A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res 67:169–174

    Article  CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722

    Article  CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brain stem in the rat and cat. J Comp Neurol 178:225–253

    Article  CAS  PubMed  Google Scholar 

  • Kreutzer EW, Jafek BW (1980) The vomeronasal organ of Jacobson in the human embryo and fetus. Otolaryngol Head Neck Surg 88:119–123

    Article  CAS  PubMed  Google Scholar 

  • Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR (1990) Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37:377–385

    Article  CAS  PubMed  Google Scholar 

  • Kubicki M, Shenton ME (2014) Diffusion tensor imaging findings and their implications in schizophrenia. Curr Opin Psychiatry 27:179–184

    Article  PubMed  Google Scholar 

  • Kuzniecky R, de la Sayette V, Ethier R, Melanson D, Andermann F, Berkovic S et al (1987) Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann Neurol 22:341–347

    Article  CAS  PubMed  Google Scholar 

  • Laakso MP, Lehtovirta M, Partanen K, Riekinen PJ, Soininen H (2000) Hippocampus in Alzheimer’s disease: a 3-year follow-up MRI study. Biol Psychiatry 47:557–561

    Article  CAS  PubMed  Google Scholar 

  • Lace G, Savva GM, Forster G, de Silva R, Brayne C, Matthews FE et al (2009) Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain 132:1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Lammers HJ (1972) The neural connections of the amygdaloid complex in mammals. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 123–144

    Chapter  Google Scholar 

  • Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70

    Article  CAS  PubMed  Google Scholar 

  • Lauer EW (1945) The nuclear pattern and fiber connections of certain basal telencephalic centers in the macaque. J Comp Neurol 82:215–255

    Article  Google Scholar 

  • Lavenex P, Suzuki WA, Amaral DG (2002) Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 447:394–420

    Article  PubMed  Google Scholar 

  • LeDoux JE (1992) Emotion and the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 339–351

    Google Scholar 

  • LeDoux JE (2000a) Emotional circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2000b) The amygdala and emotion: a view through fear. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 289–310

    Google Scholar 

  • LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body of the rat. J Comp Neurol 242:172–213

    Article  Google Scholar 

  • LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE, Farb C, Ruggiero DA (1990a) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990b) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10:1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtonen R (1973) Learning, memory and intellectual performance in a chronic state of amnesic syndrome. Acta Psychiatr Neurol Scand Suppl 54:1–156

    Google Scholar 

  • Leichnetz GR, Astruc J (1977) The course of some prefrontal corticofugals to the pallidum, substantia innominata, and amygdaloid complex in monkeys. Exp Neurol 54:104–109

    Article  CAS  PubMed  Google Scholar 

  • Leonard CM, Rolls ET, Wilson FA, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176

    Article  CAS  PubMed  Google Scholar 

  • Lim C, Blume HW, Madsen JR, Saper CB (1997a) Connections of the hippocampal formation in humans. I The mossy fiber pathway. J Comp Neurol 385:325–351

    Article  CAS  PubMed  Google Scholar 

  • Lim C, Mufson EJ, Kordower JH, Blume HW, Madsen JR, Saper CB (1997b) Ibid. II. The endfolial fiber pathway. J Comp Neurol 385:352–371

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain. Acta Physiol Scand 412:1–48

    CAS  Google Scholar 

  • Lipson SE, Sacks O, Devinsky O (2003) Selective emotional detachment from family after right temporal lobectomy. Epilepsy Behav 4:340–342

    Article  PubMed  Google Scholar 

  • Llamas A, Avendaño C, Reinoso-Suárez F (1977) Amygdaloid projections to prefrontal and motor cortex. Science 195:794–797

    Article  CAS  PubMed  Google Scholar 

  • Lohman AHM, Lammers HJ (1967) On the structure and fibre connections of the olfactory system in mammals. Prog Brain Res 23:65–82

    Article  CAS  PubMed  Google Scholar 

  • Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I The area entorhinalis. J Psychol Neurol (Lpz) 45:381–438

    Google Scholar 

  • Lorente de Nó R (1934) Ibid. II. Continuation of the study of the ammonic system. J Psychol Neurol (Lpz) 46:113–177

    Google Scholar 

  • Macchi G, Bentivoglio M, Rossini P, Tempesta E (1978) The basolateral amygdaloid projections in the cat. Neurosci Lett 9:347–351

    Article  CAS  PubMed  Google Scholar 

  • MacLean PD (1949) Psychosomatic disease and the “visceral” brain. Recent developments bearing on the Papez theory of emotion. Psychosom Med 11:338–353

    Article  CAS  PubMed  Google Scholar 

  • MacLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portions of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4:407–418

    Article  CAS  PubMed  Google Scholar 

  • MacLean PD (1958) Contrasting functions of limbic and neocortical systems of the brain and their relevance to psychophysiological aspects of medicine. Am J Med 25:611–626

    Article  CAS  PubMed  Google Scholar 

  • MacLean PD (1990) The triune brain in evolution. Plenum, New York

    Google Scholar 

  • Maglóczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28:334–340

    Article  PubMed  CAS  Google Scholar 

  • Mahut H, Zola-Morgan S, Moss S (1982) Hippocampal resections impair associative learning and recognition memory in the monkey. J Neurosci 2:1214–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mair WGP, Warrington EK, Weiskrantz L (1979) Memory disorder in Korsakoff psychosis. A neuropathological and neuropsychological investigation of two cases. Brain 102:749–783

    Article  CAS  PubMed  Google Scholar 

  • Malamud N, Skillicorn SA (1956) Relationship between the Wernicke and Korsakoff syndrome: a clinicopathological study of seventy cases. Arch Neurol Psychiatr 76:585–596

    Article  CAS  Google Scholar 

  • Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelta M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

    Article  CAS  PubMed  Google Scholar 

  • Maquet P, Peters JM, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383:163–166

    Article  CAS  PubMed  Google Scholar 

  • Markowitsch HJ, Pritzel M (1985) The neuropathology of amnesia. Prog Neurobiol 25:189–288

    Article  CAS  PubMed  Google Scholar 

  • Markowitsch HJ, Calabrese P, Würker M, Durwen MF, Kessler J, Babinsky R et al (1994) The amygdala’s contribution to memory – a PET study on two patients with Urbach-Wiethe disease. Neuroreport 5:1349–1352

    Google Scholar 

  • Marquie M, Normandia MD, Vanderburg CR, Costantino I, Bien EA, Rycyna LG et al (2015) Validating novel tau PET tracer [f-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78:787–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-García F, Novejarque A, Lanuzo E (2008) Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Res Bull 75:206–213

    Article  PubMed  Google Scholar 

  • Masliah E, Mallory M, Alford M, DeTeresa R, Iwai A, Saitoh T (1997) Molecular mechanisms of synaptic disconnection in Alzheimer’s disease. In: Hyman BT, Duyckaerts C, Christen C (eds) Connections, cognition, and Alzheimer’s disease. Springer, Berlin/Heidelberg/New York, pp 121–150

    Chapter  Google Scholar 

  • McConnell J, Angevine JB (1983) Time of neuron origin in the amygdaloid complex of the mouse. Brain Res 272:150–156

    Article  CAS  PubMed  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    Article  CAS  PubMed  Google Scholar 

  • McDonald B, Highley JR, Walker MA, Herron BM, Cooper SJ, Esiri MM et al (2000) Anomalous asymmetry of fusiform and parahippocampal gyrus gray matter in schizophrenia: a postmortem study. Am J Psychiatr 157:40–47

    Article  CAS  PubMed  Google Scholar 

  • McEntee WJ, Biber MP, Perl DP, Benson FD (1976) Diencephalic amnesia: a reappraisal. J Neurol Neurosurg Psychiatry 39:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroup on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehler WR (1980) Subcortical afferent connections of the amygdala in the monkey. J Comp Neurol 190:733–762

    Article  CAS  PubMed  Google Scholar 

  • Meibach RC, Siegel A (1975) The origin of fornix fibres which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508–512

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Pattiselano A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 365:628–639

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M (2000) Aging, Alzheimer’s disease, and dementia. Clinical and neurobiological perspectives. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 439–522

    Google Scholar 

  • Mesulam M-M, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation of the human brain; observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 274:216–240

    Article  Google Scholar 

  • Mesulam M-M, Van Hoesen GW (1976) Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res 109:152–157

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M, Mufson EJ, Wainer BH (1986) Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Res 367:301–308

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M-M, Mash L, Hersh L, Brothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra and red nucleus. J Comp Neurol 323:252–268

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Allison AC (1949) An experimental investigation of the connexions of the olfactory tracts in the monkey. J Neurol Neurosurg Psychiatry 12:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer G, Gonzalez-Hernandez T, Carrillo-Padilia F, Ferres-Torres F (1989) Aggregations of granule cells in the basal forebrain (islands of Calleja). A Golgi and cytoarchitectonic study in different mammals including man. J Comp Neurol 284:405–478

    Article  CAS  PubMed  Google Scholar 

  • Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker S (Hrsg) Handbuch der Lehre von den Geweben des Menschen und der Thiere, Vol 2. Engelmann, Leipzig, pp 694–808 (English translation by Putnam JJ, 1872: Stricker S (ed) Manual of histology. William Wood, New York, pp 650–766)

    Google Scholar 

  • Michel D, Laurent B, Foyatier N, Blanc A, Portafix M (1982) Infarctus thalamique paramédian gauche. Etude de la mémoire et du langage Rev Neurol (Paris) 138:533–550

    CAS  Google Scholar 

  • Mikkonen M, Soininen H, Pitkänen A (1997) Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. J Comp Neurol 388:64–88

    Article  CAS  PubMed  Google Scholar 

  • Milner B (1972) Disorders of learning and memory after temporal lobe lesions in man. Clin Neurosurg 19:421–446

    Article  CAS  PubMed  Google Scholar 

  • Milner B, Corkin S, Teuber HL (1968) Further analysis of the hippocampal amnesic syndrome: fourteen year follow-up study of H.M. Neuropsychologia 6:215–234

    Article  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II Standardization of the neuropathologic assessment for Alzheimer’s disease. Neurology 41:479–486

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not separate removal of amygdala and hippocampus. Nature 273:297–298

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond B 298:85–95

    Article  Google Scholar 

  • Mizuno N, Takahashi O, Satoda T, Matsushima R (1985) Amygdaloid projections in the macaque monkey. Neurosci Lett 53:327–330

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Halaris AE (1975) Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 164:171–184

    Article  CAS  PubMed  Google Scholar 

  • Mori K (2016) Axonal projection of olfactory bulb tufted and mitral cells to olfactory cortex. In: Rockland KS (ed) Axons and brain architecture. Academic Press/Elsevier, San Diego, pp 3–26

    Chapter  Google Scholar 

  • Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414

    Article  CAS  PubMed  Google Scholar 

  • Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G et al (1989) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815

    Article  CAS  PubMed  Google Scholar 

  • Moser EI, Witter MP, Moser M-B (2018) Entorhinal cortex. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits, 2nd edn. Oxford University Press, New York, pp 227–244

    Google Scholar 

  • Mouritzen Dam A (1982) Hippocampal neuron loss in epilepsy and after experimental seizures. Acta Neurol Scand 66:601–642

    Article  Google Scholar 

  • Mueller SG, Stables L, Du AT, Schuff N, Truran D, Cashdollar N, Weiner MW (2007) Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiol Aging 28:719–726

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Mesulam M-M, Pandya DN (1981) Insular interconnections with the amygdala in the rhesus monkey. Neuroscience 6:1231–1248

    Article  CAS  PubMed  Google Scholar 

  • Murray EA, Mishkin M (1984) Severe tactual as well as visual memory deficits follow combined removal of the amygdala and hippocampus in monkeys. J Neurosci 4:2563–2580

    Article  Google Scholar 

  • Murray EA, Mishkin M (1985) Amygdalectomy impairs crossmodal association in monkeys. Science 228:604–606

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Kimmelman CP, Snow JB (1984) Structure of human fetal and adult olfactory neuroepithelium. Arch Otolaryngol (Chicago) 110:641–646

    Article  CAS  Google Scholar 

  • Nakashima T, Kimmelman CP, Snow JB (1985) Vomeronasal organs and nerves of Jacobson in the human fetus. Acta Otolaryngol 99:266–271

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJH (1958) Hippocampal projections and related neural pathways to the midbrain. Brain 81:319–340

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJH (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat (Lond) 95:515–532

    CAS  Google Scholar 

  • Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ et al (2018) The amygdala as a locus of pathologic misfolding in neurodegenerative diseases. J Neuropathol Exp Neurol 77:2–20

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580

    Article  CAS  PubMed  Google Scholar 

  • Norgren R (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166:17–30

    Article  CAS  PubMed  Google Scholar 

  • Norita M, Kawamura K (1980) Subcortical afferents to the monkey amygdala: an HRP study. Brain Res 190:225–230

    Article  CAS  PubMed  Google Scholar 

  • Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt PJ (1995) Congenital malformations of the brain. Pathologic, embryologic, clinical, radiologic, and genetic aspects. Oxford University Press, New York

    Google Scholar 

  • Oelschläger HA, Buhl EH, Dann JF (1987) Development of the nervus terminalis in mammals including toothed whales and humans. Ann N Y Acad Sci 519:447–464

    Article  PubMed  Google Scholar 

  • Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64:209–217

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma T, Kimura M, Takahashi T, Iwamoto N, Arai H (1997) A magnetic resonance imaging study in first-episode disorganized-type patients with schizophrenia. Psychiatry Clin Neurosci 51:9–15

    Article  CAS  PubMed  Google Scholar 

  • Ortmann R (1989) Über Sinneszellen am fetalen vomeronasalen Organ des Menschen. HNO 37:191–197

    CAS  PubMed  Google Scholar 

  • Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL et al (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139:1551–1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Ottersen OP (1982) Connections of the amygdala of the rat. IV. Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol 205:30–48

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN, Van Hoesen GW, Domesick VB (1973) A cingulo-amygdaloid projection in the rhesus monkey. Brain Res 61:369–373

    Article  CAS  PubMed  Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 42:725–743

    Article  Google Scholar 

  • Parent JM (2007) Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res 163:529–540

    Article  CAS  PubMed  Google Scholar 

  • Park SA, Hahn JH, Kim JI, Na DL, Huh K (2000) Memory deficits after bilateral anterior fornix infarction. Neurology 54:1379–1382

    Article  CAS  PubMed  Google Scholar 

  • Pasquier DA, Reinoso-Suarez F (1977) Differential efferent connections of the brain stem to the hippocampus in the cat. Brain Res 120:540–548

    Article  CAS  PubMed  Google Scholar 

  • Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci U S A 82:4531–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfield W, Mathieson G (1974) Memory: autopsy findings and comments on the role of hippocampus in experiential recall. Arch Neurol 31:145–154

    Article  CAS  PubMed  Google Scholar 

  • Penfield W, Milner B (1958) Memory deficit produced by bilateral lesions in the hippocampal zone. Arch Neurol Psychiatr 79:475–497

    Article  CAS  Google Scholar 

  • Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP et al (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310

    Article  PubMed  Google Scholar 

  • Pessoa L, Adolphs R (2010) Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci 11:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovich GD, Risold PY, Swanson LW (1996) Organization of projections from the basomedial nucleus of the amygdala: a PHA-L study in the rat. J Comp Neurol 374:387–420

    Article  CAS  PubMed  Google Scholar 

  • Phillips ML, Young AW, Senior C, Brammer M, Andrew C, Calder AJ et al (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495–498

    Article  CAS  PubMed  Google Scholar 

  • Phillips ML, Young AW, Scott SK, Calder J, Andrew C, Giampietro V (1998) Neural responses to facial and vocal expressions of fear and disgust. Proc Roy Soc Lond B 265:1809–1817

    Article  CAS  Google Scholar 

  • Pick A (1892) Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr 17:165–167

    Google Scholar 

  • Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 31–115

    Google Scholar 

  • Pitkänen A, Amaral DG (1991) Demonstration of projections from the lateral nucleus of the amygdala to the basal nucleus: a PHA-L study in the monkey. Exp Brain Res 83:465–470

    Article  PubMed  Google Scholar 

  • Pitkänen A, Stefanacci L, Farb C, Go C-G, LeDoux JE, Amaral DG (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 356:288–310

    Article  PubMed  Google Scholar 

  • Pitkänen A, Kelly JL, Amaral DG (2002) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus 12:186–205

    Article  PubMed  Google Scholar 

  • Powell TPS, Guillery RW, Cowan WM (1957) A quantitative study of the fornix-mamillothalamic system. J Anat (Lond) 91:419–437

    CAS  Google Scholar 

  • Powers RE (1999) The neuropathology of schizophrenia. J Neuropathol Exp Neurol 58:679–690

    Article  CAS  PubMed  Google Scholar 

  • Price JL (2004) Olfactory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1197–1211

    Chapter  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price JL, Russchen FT, Amaral DG (1987) The limbic region. II. The amygdaloid complex. Handb Chem Neuroanat 5:279–388

    Google Scholar 

  • Price BH, Gurvit H, Weintraub S, Geula C, Leimkuhler E, Mesulam M-M (1993) Neuropsychological patterns and language deficits in 20 consecutive cases of autopsy-confirmed Alzheimer’s disease. Arch Neurol 50:931–937

    Article  CAS  PubMed  Google Scholar 

  • Pugliese L, Catani M, Ameis S, Dell’Acqua F, Theibaut de Schotten M, Murphy C et al (2009) The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study. NeuroImage 47:427–434

    Article  PubMed  Google Scholar 

  • Raedler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8:157–161

    Article  CAS  PubMed  Google Scholar 

  • Raisman G, Cowan WM, Powell TPS (1966) An experimental analysis of the efferent projections of the hippocampus. Brain 89:83–108

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1909–1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Rasmussen DX, Brandt J, Steele C, Hedreen JC, Troncoso JC, Folstein MF (1996) Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology. Alzheimer Dis Relat Disord 10:180–188

    Article  Google Scholar 

  • Razi K, Greene KP, Sakuma M, Ge S, Kushner M, De Lisi LE (1999) Reduction of the parahippocampal gyrus and the hippocampus in patients with chronic schizophrenia. Br J Psychiatry 174:512–519

    Article  CAS  PubMed  Google Scholar 

  • Reas ET (2017) Amyloid and tau pathology in normal cognitive aging. J Neurosci 37:7561–7563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rempel-Clower NL, Zola SM, Squire LR, Amaral DG (1996) Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci 16:5233–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retzius G (1896) Das Menschenhirn: Studien in der makroskopischen Morphologie. Norstedt, Stockholm

    Google Scholar 

  • Roberts GW (1990) Schizophrenia: the cellular biology of a functional psychosis. Trends Neurosci 13:207–211

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (1992) Neurophysiology and functions of the primate amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 143–167

    Google Scholar 

  • Rolls ET (2000) Neurophysiology and functions of the primate amygdala, and the neural basis of emotion. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 447–478

    Google Scholar 

  • Room P, Groenewegen HJ (1986) The connections of the parahippocampal cortex in the cat. II. Subcortical afferents. J Comp Neurol 251:451–473

    Article  CAS  PubMed  Google Scholar 

  • Room P, Groenewegen HJ, Lohman AHM (1984) Inputs from the olfactory bulb and olfactory cortex to the entorhinal cortex in the cat. Exp Brain Res 56:488–496

    Article  CAS  PubMed  Google Scholar 

  • Rose M (1927a) Die Allocortex bei Tier und Mensch. I Teil J Psychol Neurol (Lpz) 34:1–111

    Google Scholar 

  • Rose M (1927b) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des “Allocortex bei Tier und Mensch”. J Psychol Neurol (Lpz) 34:261–401

    Google Scholar 

  • Rose M (1935) Cytoarchitektonik und Myeloarchitektonik der Grosshirnrinde. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, Vol I: Allgemeine Neurologie I, Anatomie. Springer, Berlin/Heidelberg/New York, pp 588–778

    Google Scholar 

  • Rose J (1938) Zur normalen und pathologischen Architektonik der Ammonsformation. J Psychol Neurol (Lpz) 49:137–192

    Google Scholar 

  • Rose FC, Symonds CP (1960) Persistent memory deficit following encephalitis. Brain 83:195–212

    Article  CAS  PubMed  Google Scholar 

  • Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in rhesus monkey. Science 198:315–317

    Article  CAS  PubMed  Google Scholar 

  • Ross ED (2008) Sensory-specific amnesia and hypoemotionality in humans and monkeys: gateway for developing a hodology of memory. Cortex 44:1010–1022

    Article  PubMed  Google Scholar 

  • Rousseaux M (1994) Amnesias following limited thalamic infarctions. In: Delacourte J (ed) The memory system of the brain. World Scientific, Singapore, pp 241–277

    Chapter  Google Scholar 

  • Rusinek H, De Santi S, Frid D, Tsui W-H, Tarshish CY, Convit A, de Leon MJ (2003) Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 229:691–696

    Article  PubMed  Google Scholar 

  • Russchen FT (1982a) Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques. J Comp Neurol 206:159–179

    Article  CAS  PubMed  Google Scholar 

  • Russchen FT (1982b) Ibid. II. Subcortical afferent connections. A study with retrograde tracing techniques. J Comp Neurol 207:157–176

    Article  CAS  PubMed  Google Scholar 

  • Russchen FT (1986) Cortical and subcortical afferents of the amygdaloid complex. In: Ben-Ari Y, Schwarcz R (eds) Excitatory amino acids and epilepsy. Plenum, New York, pp 35–52

    Chapter  Google Scholar 

  • Russchen FT, Bakst I, Amaral DG, Price JL (1985a) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257

    Article  CAS  PubMed  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1985b) The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242:1–27

    Article  CAS  PubMed  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto N, Pearson J, Shinoda K, Alheid GF (1999) The human basal forebrain, part 1. Handb Chem Neuroanat 15:1–55

    Article  Google Scholar 

  • Sanides F (1957) Die Insulae terminales des erwachsenen Gehirns des Menschen. J Hirnforsch 3:243–273

    CAS  PubMed  Google Scholar 

  • Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1095–1113

    Chapter  Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976a) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976b) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398

    Article  CAS  PubMed  Google Scholar 

  • Saunders RC, Mishkin M, Aggleton JP (2005) Projections from the entorhinal cortex, perirhinal cortex, subiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1–16

    Article  PubMed  Google Scholar 

  • Savander V, Go C-G, LeDoux JE, Pitkänen A (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the basal nucleus. J Comp Neurol 361:345–368

    Article  CAS  PubMed  Google Scholar 

  • Savander V, Go C-G, LeDoux JE, Pitkänen A (1996) Intrinsic connections of the rat amygdaloid complex: projections originating in the accessory basal nucleus. J Comp Neurol 374:291–313

    Article  CAS  PubMed  Google Scholar 

  • Savic I (2002) Imaging of brain activation by odorants in humans. Curr Opin Neurobiol 12:455–461

    Article  CAS  PubMed  Google Scholar 

  • Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal aging: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller F (1992) Paul Broca. Founder of French anthropology, explorer of the brain. Oxford University Press, New York

    Google Scholar 

  • Schmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34:2264–2278

    Article  PubMed  Google Scholar 

  • Schuff N, Woerner N, Boreta L, Kornfeld T, Shaw LM, Trojanowski JQ et al (2009) MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132:1067–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH et al (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwanzel-Fukuda M, Pfaff DW (1989) Origin of luteinizing hormone releasing hormone neurons. Nature 338:161–164

    Article  CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone releasing hormone (LHRH) – expressing cells do not migrate in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 6:311–326

    Google Scholar 

  • Schwanzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PMG, Hardelin J-P, Petit C (1996) Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 366:547–557

    Article  CAS  PubMed  Google Scholar 

  • Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological staging. Brain 139:1539–1550

    Article  PubMed  Google Scholar 

  • Scoville WB (1954) The limbic lobe and memory in man. J Neurosurg 11:64–66

    Article  CAS  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Psychiatry 20:11–21

    Article  CAS  Google Scholar 

  • Seress L (2007) Comparative anatomy of the hippocampal dentate gyrus in adult and developing rodents, non-human primates and humans. Prog Brain Res 163:23–41

    Article  PubMed  Google Scholar 

  • Shenton ME, Kikinis R, Jolesz FA (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia: a quantitative magnetic resonance imaging study. N Engl J Med 327:604–612

    Article  CAS  PubMed  Google Scholar 

  • Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophrenia Res 49:1–52

    Article  CAS  Google Scholar 

  • Shepherd GM, Greer CA (1990) Olfactory bulb. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 133–169

    Google Scholar 

  • Shepherd TM, Özarslan E, Yachnis AT, King MA, Blackband SJ (2007) Diffusion tensor microscopy indicates the cytoarchitectural basis for diffusion anisotropy in the human hippocampus. AJNR Am J Neuroradiol 28:958–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley MI, McLean JH, Ennis M (1995) Olfactory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 899–926

    Google Scholar 

  • Siegel A, Edinger H, Ohgami S (1974) The topographical organization of the hippocampal projection to the septal area: a comparative neuroanatomical analysis in the gerbil, rat, rabbit, and cat. J Comp Neurol 157:359–378

    Article  CAS  PubMed  Google Scholar 

  • Siegel A, Ohgami S, Edinger H (1975) Projections of the hippocampus to the septal area in the squirrel monkey. Brain Res 99:247–260

    Article  CAS  PubMed  Google Scholar 

  • Signoret J-L (1985) Memory and amnesias. In: Mesulam M-M (ed) Principles of behavioral neurology. Davis, Philadelphia, pp 169–192

    Google Scholar 

  • Šimić G, Mrzljak A, Fučić A, Winblad B, Lovrić H, Kostović I (1999) Nucleus subputaminalis (Ayala): the still disregarded magnocellular component of the basal forebrain may be human specific and connected with the cortical speech area. Neuroscience 89:73–89

    Article  PubMed  Google Scholar 

  • Simpson DA (1952) The efferent fibres of the hippocampus in the monkey. J Neurol Neurosurg Psychiatry 15:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloviter RS (1994) The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 35:640–654

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS, Brisman JL (1995) Lateral inhibition and granule cell synchrony in the rat hippocampal dentate gyrus. J Neurosci 15:811–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solodkin A, Van Hoesen GW (1996) Entorhinal cortex modules of the human brain. J Comp Neurol 365:610–627

    Article  CAS  PubMed  Google Scholar 

  • Sommer W (1880) Erkrankung des Ammonshorn als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 10:631–675

    Article  Google Scholar 

  • Somogyi P (2010) Hippocampus: intrinsic organization. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits. Oxford University Press, New York, pp 146–164

    Google Scholar 

  • Somogyi P, Klausberger T (2018) Hippocampus: intrinsic organization. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits, 2nd edn. Oxford University Press, New York, pp 199–215

    Google Scholar 

  • Sørensen KE (1985) Projections of the entorhinal area to the striatum, nucleus accumbens, and cerebral cortex in the Guinea pig. J Comp Neurol 238:308–322

    Article  PubMed  Google Scholar 

  • Spaniol J, Davidson PS, Kim AS, Han H, Moscovitch M, Gracey CL (2009) Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47:1765–1779

    Article  PubMed  Google Scholar 

  • Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard DS, Artru AA et al (2002) Brain structural abnormalities in young children with autism spectrum disorders. Neurology 59:184–192

    Article  CAS  PubMed  Google Scholar 

  • Speedie LJ, Heilman KM (1982) Amnestic disturbance following infarction of the left dorsomedial nucleus of the thalamus. Neuropsychologia 20:597–604

    Article  CAS  PubMed  Google Scholar 

  • Speedie LJ, Heilman KM (1983) Anterograde memory deficits for visuospatial material after infarction of the right thalamus. Arch Neurol 40:183–186

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W (1927) Die Pathogenese des epileptischen Krampfes. Z Ges Neurol Psychiatr 109:501–520

    Article  Google Scholar 

  • Spiers HJ, Maguire EA, Burgess N (2001) Hippocampal amnesia. Neurocase 7:357–382

    Article  CAS  PubMed  Google Scholar 

  • Squire LR (1987) Memory: neural organization and behavior. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Vol V: Higher functions of the brain. American Physiological Society, Bethesda, pp 295–371

    Google Scholar 

  • Squire LR, Bayley PJ (2007) The neuroscience of remote memory. Curr Opin Neurobiol 17:185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squire LR, Moore RY (1979) Dorsal thalamic lesions in a noted case of human memory dysfunction. Ann Neurol 6:503–506

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Amaral DG, Zola-Morgan S, Kritchevsky M, Press G (1989) Description of brain injury in the amnesic patient N.A. based on magnetic resonance imaging. Exp Neurol 105:23–35

    Article  CAS  PubMed  Google Scholar 

  • Stefanacci L, Amaral DG (2000) Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: a retrograde tracing study. J Comp Neurol 421:52–79

    Article  CAS  PubMed  Google Scholar 

  • Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen, Vol 4, Teil 9. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Stephan H, Andy OJ (1970) The allocortex in primates. In: Noback CR, Montagna W (eds) The primate brain. Appleton-Century-Crofts, New York, pp 109–135

    Google Scholar 

  • Stephan H, Andy OJ (1977) Quantitative comparison of the amygdala in insectivores and primates. Acta Anat (Basel) 98:130–153

    Article  CAS  Google Scholar 

  • Stoub TR, deToledo-Morrell L, Stebbins GT, Leurgans S, Bennett DA, Shah R (2006) Hippocampal disconnection contributes to memory dysfunction in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 103:10041–10045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutula TP, Dudek FE (2007) Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog Brain Res 163:541–563

    Article  CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (1994a) The perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533

    Article  CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki WA, Amaral DG (2003a) The perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463:67–91

    Article  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (2003b) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120:893–906

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1975) Hippocampo-hypothalamic connection: origin in subicular cortex, not Ammon’s horn. Science 189:303–304

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE, Cowan WM (1981) Evidence for collateral projections by neurons in Ammon’s horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat. J Neurosci 1:548–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi SF (1986) Studies on the olfactory nervous system. Prog Neurobiol 27:195–250

    Article  CAS  PubMed  Google Scholar 

  • Talbot K, Arnold SE (2002) The parahippocampal region in schizophrenia. In: Witter M, Wouterlood F (eds) The Parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 297–320

    Google Scholar 

  • Tanaka Y, Miyazawa Y, Araoka F, Yamada T (1997) Amnesia following damage to the mammillary bodies. Neurology 4:160–165

    Article  Google Scholar 

  • Teipel SJ, Pruessner JC, Faltraco F, Born C, Rocha-Unold M, Evans A et al (2006) Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 253:794–800

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammers GJ, Gribnau AAM (1979) Neurogenesis in the amygdaloid complex of a rodent (the Chinese hamster). Brain Res 165:348–353

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Cruysberg JRM, Hori A, Shiota K, Verbist B (2006) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology: development and developmental disorders of the human central nervous system. Springer, Berlin/Heidelberg/New York, pp 345–428

    Chapter  Google Scholar 

  • ten Donkelaar HJ, Vermeij-Keers C, Lohman AHM (2007a) Hoofd en hals. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische anatomie en embryologie, 3rd edn. Elsevier, Maarssen, pp 545–727. (in Dutch)

    Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007b) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141. (in Dutch)

    Google Scholar 

  • ten Donkelaar HJ, Lammens M, Cruysberg JRM, Kamphuis-van Ulzen K, Hori A, Shiota K (2014) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg/New York/Dordrecht/London, pp 421–521

    Google Scholar 

  • ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155

    Article  PubMed  Google Scholar 

  • ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated terminologia neuroanatomica: a concise encyclopedia of human neuroanatomy. Springer, Cham

    Book  Google Scholar 

  • ter Laak HJ, Renkawek K, van Workum FPA (1994) The olfactory bulb in Alzheimer disease: a morphologic study of neuron loss, tangles, and senile plaques in relation to olfaction. Alzheimer Dis Assoc Disord 8:38–48

    Article  PubMed  Google Scholar 

  • Teuber HL, Milner B, Vaughan HC (1968) Persistent anterograde amnesia after stab wound of the basal brain. Neuropsychologia 6:267–282

    Article  Google Scholar 

  • Theysohn JM, Kraff O, Maderwald S, Schlamann MK, de Greiff A, Forsting M et al (2009) The human hippocampus at 7T-in vivo MRI. Hippocampus 19:1–7

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Dell’Acqua F, Ratiu P, Leslie A, Howells H, Cabanis E et al (2015) From Phineas gage and Monsieur Leborgne to H.M.: revisiting disconnection syndromes. Cereb Cortex 25:4812–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thom M, Griffin B, Sander JW, Scaravilli F (1999) Amygdala sclerosis in sudden and unexpected death in epilepsy. Epilepsy Res 37:53–62

    Article  CAS  PubMed  Google Scholar 

  • Thom M, Sisodya SM, Beckett A, Martinian L, Lin W-R, Harkness W et al (2002) Cytoarchitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol 61:510–519

    Article  PubMed  Google Scholar 

  • Tigges J, Tigges M, Cross NA, McBride RL, Letbetter WD, Anschel S (1982) Subcortical structures projecting to visual cortical areas in squirrel monkey. J Comp Neurol 209:29–40

    Article  CAS  PubMed  Google Scholar 

  • Tigges J, Walker LC, Tigges M (1983) Subcortical projections to the occipital and parietal lobes of the chimpanzee brain. J Comp Neurol 220:106–115

    Article  CAS  PubMed  Google Scholar 

  • TNA (2017) Terminologia Neuroanatomica. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology

    Google Scholar 

  • Toledo JB, Xie SX, Trojanowski JQ, Shaw LM (2013) Longitudinal change in CSF tau and Abeta biomarkers for up to 48 months in ADNI. Acta Neuropathol (Berl) 126:659–670

    Article  CAS  Google Scholar 

  • Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16:317–331

    Article  CAS  PubMed  Google Scholar 

  • Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic, New York, pp 381–403

    Google Scholar 

  • Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8:198–204

    Article  CAS  PubMed  Google Scholar 

  • Turner BH, Gupta KC, Mishkin M (1978) The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. J Comp Neurol 177:381–396

    Article  CAS  PubMed  Google Scholar 

  • Turner BH, Mishkin M, Knapp M (1980) Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol 191:515–543

    Article  CAS  PubMed  Google Scholar 

  • Unger JW, Lapham LW, McNeill TH, Eskin TA, Hamill RW (1991) The amygdala in Alzheimer’s disease: neuropathology and Alz 50 immunoreactivity. Neurobiol Aging 12:389–399

    Article  CAS  PubMed  Google Scholar 

  • van de Pol LA, Hensel A, Barkhof F, Gertz HJ, Scheltens P, van der Flier WM (2006) Hippocampal atrophy in Alzheimer disease: age matters. Neurology 66:236–238

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W et al (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiat 70:783–792

    Article  Google Scholar 

  • van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS (2015) Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol Psychiatry 80:293–301

    Article  PubMed  Google Scholar 

  • van der Werf YD (2000) The thalamus and memory. Contributions to medial temporal and prefrontal memory processes. Thesis, Free University, Amsterdam

    Google Scholar 

  • van der Werf YD, Witter MP, Uylings HBM, Jolles J (2000) Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38:613–627

    Article  PubMed  Google Scholar 

  • van der Werf YD, Scheltens P, Lindeboom J, Witter MP, Uylings HBM, Jolles J (2003) Deficits of memory, executive functioning and attention in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 41:1330–1344

    Article  PubMed  Google Scholar 

  • Van Hoesen GW (1981) The differential distribution, diversity and sprouting of cortical projections to the amygdala in the rhesus monkey. In: Ben-Ari Y (ed) The amygdaloid complex. Elsevier/North Holland, Amsterdam, pp 77–90

    Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350

    Article  Google Scholar 

  • Van Hoesen GW (1995) Anatomy of the medial temporal lobe. Magn Reson Imaging 13:1047–1055

    Article  PubMed  Google Scholar 

  • Van Hoesen GW (2002) The human parahippocampal region in Alzheimer’s disease, dementia, and ageing. In: Witter M, Wouterlood F (eds) The Parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 271–295

    Google Scholar 

  • Van Hoesen GW, Damasio AR (1987) Neural correlates of cognitive impairment in Alzheimer’s disease. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Vol V: Higher functions of the nervous system. American Physiological Society, Bethesda, pp 871–898

    Google Scholar 

  • Van Hoesen GW, Pandya DN (1975a) Some connections of the entorhinal (area 28) and perirhinal (ara 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24

    Article  PubMed  Google Scholar 

  • Van Hoesen GW, Pandya DN (1975b) Ibid. III. Efferent connections. Brain Res 95:39–59

    Article  PubMed  Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters N (1975) Ibid. II. Frontal lobe afferents. Brain Res 95:25–38

    Article  PubMed  Google Scholar 

  • Van Paesschen W, Révész T (1998) Hippocampal sclerosis. In: Scaravilli F (ed) Neuropathology of epilepsy. World Scientific, Singapore, pp 501–572

    Chapter  Google Scholar 

  • Van Paesschen W, Révész T, Duncan JS, King MD, Connelly A (1997) Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Ann Neurol 42:756–766

    Article  PubMed  Google Scholar 

  • Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nat Rev Neurosci 5:35–44

    Article  CAS  PubMed  Google Scholar 

  • Varghese M, Keshaw N, Jacot-Descombes S, Warda T, Wicinski B, Dickson DL et al (2017) Autism spectrum disorders: neuropathology and animal models. Acta Neuropathol (Berl) 134:537–566

    Article  CAS  Google Scholar 

  • Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 207:135–156

    Article  CAS  PubMed  Google Scholar 

  • Veening JG (1978a) Cortical afferents of the amygdaloid complex in the rat: an HRP study. Neurosci Lett 8:191–195

    Article  CAS  PubMed  Google Scholar 

  • Veening JG (1978b) Subcortical afferents of the amygdaloid complex in the rat. Neurosci Lett 8:197–202

    Article  CAS  PubMed  Google Scholar 

  • Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport and immunohistochemical study. Brain Res 303:337–357

    Article  CAS  PubMed  Google Scholar 

  • Vereecken THLG, Vogels OJM, Nieuwenhuys R (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 15:45–54

    Article  CAS  PubMed  Google Scholar 

  • Victor M, Adams RD, Collins GH (1971) The Wernicke-Korsakoff Syndrome. Davis, Philadelphia

    Google Scholar 

  • Vogels OJM, Broere CAJ, ter Laak HJ, ten Donkelaar HJ, Nieuwenhuys R, Schulte BPM (1990) Cell loss and shrinkage in the nucleus basalis of Meynert complex in Alzheimer’s disease. Neurobiol Aging 11:3–13

    Article  CAS  PubMed  Google Scholar 

  • Vogt O (1903) Zur anatomischen Gliederung des Cortex cerebri. J Psychol Neurol (Lpz) 2:160–180

    Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol (Lpz) 25:279–461

    Google Scholar 

  • Volpe BT, Hirst W (1983) The characterization of an amnesic syndrome following hypoxic ischemic injury. Arch Neurol 40:436–445

    Article  CAS  PubMed  Google Scholar 

  • Volsch M (1906) Zur vergleichenden Anatomie des Mandelkerns und seine Nachbargebilde, Teil I. Arch Mikrosk Anat 68:573–683

    Article  Google Scholar 

  • Volsch M (1910) Zur vergleichenden Anatomie des Mandelkerns und seine Nachbargebilde, Teil II. Arch Mikrosk Anat 76:373–523

    Article  Google Scholar 

  • von Bechterew W (1900) Demonstration eines Gehirns mit Zerstörung der vorderen und inneren Theile der Hirnrinde beider Schläfenlappen. Neurol Zbl 19:990–991

    Google Scholar 

  • von Cramon DY, Hebel N, Schuri U (1985) A contribution to the anatomical basis of thalamic amnesia. Brain 108:993–1008

    Article  Google Scholar 

  • von Cramon DY, Markowitsch HJ, Schuri U (1993) The possible contribution of the septal region to memory. Neuropsychologia 31:1159–1180

    Article  Google Scholar 

  • Voogd J, Nieuwenhuys R, van Dongen PAM, ten Donkelaar HJ (1998) Mammals. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 1637–2097

    Chapter  Google Scholar 

  • Voorn P, Brady LS, Berendse HW, Richfield EK (1996) Densitometrical analysis of opioid receptor ligand binding in the human striatum. I: Distribution of μ opioid receptor defines shell and core of the ventral striatum. Neuroscience 75:777–792

    Article  CAS  PubMed  Google Scholar 

  • Wainer BH, Levey AI, Rye DB, Mesulam M-M (1985) Cholinergic and non-cholinergic septohippocampal pathways. Neurosci Lett 54:45–52

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenetic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49:381–391

    Article  CAS  PubMed  Google Scholar 

  • Wernicke C (1881) Die acute, hemorrhagische Polioencephalitis superior. In: Wernicke C (ed) Lehrbuch der Gehirnkrankheiten für Ärzte und Studierende. Band II. Fischer, Kassel/Berlin, pp 229–242

    Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR (1982) Alzheimer’s disease and senile dementias: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol 13:243–248

    Article  CAS  PubMed  Google Scholar 

  • Whitlock DG, Nauta WJH (1956) Subcortical projections from the temporal neocortex in Macaca mulatta. J Comp Neurol 106:183–212

    Article  PubMed  Google Scholar 

  • Williams M, Pennybacker J (1954) Memory disturbances in third ventricle tumours. J Neurol Neurosurg Psychiatry 17:115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willsey AJ, State MW (2015) Autism spectrum disorders: from genes to neurobiology. Curr Opin Neurobiol 30:92–99

    Article  PubMed  CAS  Google Scholar 

  • Wilson CL, Isokawa M, Babb TL, Crandall PH (1990) Functional connections in the human temporal lobe. I. Analysis of limbic system pathways using neuronal responses evoked by electrical stimulation. Exp Brain Res 82:279–292

    Article  CAS  PubMed  Google Scholar 

  • Wilson CL, Isokawa M, Babb TL, Crandall PH, Levesque MF, Engel J (1991) Ibid. II. Evidence for a loss of functional linkage between contralateral limbic structures. Exp Brain Res 85:174–187

    Article  CAS  PubMed  Google Scholar 

  • Winocur G, Oxbury S, Roberts R, Agnetti V, Davis C (1984) Amnesia in a patient with bilateral lesions to the thalamus. Neuropsychologia 22:123–143

    Article  CAS  PubMed  Google Scholar 

  • Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690

    Article  CAS  PubMed  Google Scholar 

  • Witter M (2002) The parahippocampal region: past, present and future. In: Witter M, Wouterlood F (eds) The Parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 3–19

    Chapter  Google Scholar 

  • Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61

    Article  PubMed  Google Scholar 

  • Witter M, Amaral DG (1991) Entorhinal cortex of the monkey. V. Projections to the dentate gyrus, hippocampus and subicular complex. J Comp Neurol 307:437–459

    Article  CAS  PubMed  Google Scholar 

  • Witter M, Groenewegen HJ (1984) Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J Comp Neurol 224:371–385

    Article  CAS  PubMed  Google Scholar 

  • Witter M, Groenewegen HJ (1986) The connections of the parahippocampal cortex in the cat. IV. Subcortical efferents. J Comp Neurol 252:51–77

    Article  CAS  PubMed  Google Scholar 

  • Witter M, Van Hoesen GW, Amaral DG (1989) Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9:216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf HK, Aliashkevich AF, Blümcke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol (Berl) 93:606–610

    Article  CAS  Google Scholar 

  • Woolf NJ, Butcher LL (1982) Cholinergic projections to the basolateral amygdala: a combined Evans Blue and acetylcholinesterase analysis. Brain Res Bull 8:751–763

    Article  CAS  PubMed  Google Scholar 

  • Wray S, Nieburgs A, Elkabes S (1989a) Spatiotemporal cell expression of luteinizing hormone releasing hormone in the prenatal mouse: evidence for an embryonic origin in the olfactory pit. Dev Brain Res 46:309–318

    Article  CAS  Google Scholar 

  • Wray S, Grant P, Gainer H (1989b) Evidence that cells expressing luteinizing hormone releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A 86:8132–8136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakovlev PI (1948) Motility, behavior, and the brain. J Nerv Ment Dis 107:313–335

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev PI (1972) A proposed definition of the limbic system. In: Hockman CH (ed) Limbic system mechanisms and autonomic function. Thomas, Springfield, pp 241–283

    Google Scholar 

  • Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease : neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577

    Article  CAS  PubMed  Google Scholar 

  • Yilmazer-Hanke DM (2012) Amygdala. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 759–784

    Chapter  Google Scholar 

  • Young AW, Aggleton JG, Hellawell DJ, Johnson M, Broks P, Hanley JR (1995) Face processing impairments after amygdalotomy. Brain 118:15–24

    Article  PubMed  Google Scholar 

  • Yukie M (2000) Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 423:282–298

    Article  CAS  PubMed  Google Scholar 

  • Yukie M (2002) Connections between the amygdala and auditory cortical areas in the macaque monkey. Neurosci Res 42:219–229

    Article  PubMed  Google Scholar 

  • Zaborsky L, Gombkoto P (2018) The cholinergic multicompartmental basal forebrain microcircuit. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits, 2nd edn. Oxford University Press, New York, pp 163–183

    Google Scholar 

  • Záborsky L, Heimer L (1984) Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells in the rostral forebrain. Neurosci Lett 52:219–225

    Article  Google Scholar 

  • Zald DH, Pardo JV (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci U S A 94:4119–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zald DH, Lee JT, Fluegel KW, Pardo JV (1998) Aversive gustatory stimulation activates limbic circuits in humans. Brain 121:1143–1154

    Article  PubMed  Google Scholar 

  • Zeineh MM, Palomero-Gallagher N, Axer M, Gräβel D, Goubran M, Wree A et al (2017) Direct visualization and mapping of the spatial course of fibre tracts at microscopic resolution in the human hippocampus. Cereb Cortex 27:1779–1794

    PubMed  Google Scholar 

  • Zhao Q, Liu M, Zhou Y, Alzheimer’s Disease Neuroimaging Initiative (2019) Quantitative 18F-AV1451 brain tau PET imaging in cognitive normal older adults, mild cognitive impairment, and Alzheimer’s disease patients. Front Neurol 10:486

    Article  PubMed  PubMed Central  Google Scholar 

  • Zilles K (1990) Architecture of the human cerebral cortex. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 757–802

    Chapter  Google Scholar 

  • Zilles K (2004) Architecture of the human cerebral cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 997–1005

    Chapter  Google Scholar 

  • Zilles K, Amunts K (2012) Architecture of the human cerebral cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 836–895

    Chapter  Google Scholar 

  • Zola-Morgan S, Squire LR (1984) Preserved learning in monkeys with medial temporal lesions: sparing of motor and cognitive skills. J Neurosci 4:1072–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zola-Morgan S, Squire L (1985) Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus. Ann Neurol 17:558–564

    Article  CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire L, Mishkin M (1982) The neuroanatomy of amnesia: Amygdalo-hippocampus versus temporal stem. Science 218:1337–1339

    Article  CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

ten Donkelaar, H.J., Insausti, R., van Domburg, P., Küsters, B., Hashizume, Y., Hori, A. (2020). The Limbic System. In: Clinical Neuroanatomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41878-6_14

Download citation

Publish with us

Policies and ethics