Skip to main content

A Review on Hom-Gerstenhaber Algebras and Hom-Lie Algebroids

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 317))

Abstract

The aim of the present  article is to review the current progress on Hom-Gerstenhaber algebras and Hom-Lie algebroids. There are two different definitions of Hom-Lie algebroids. The modification was made in the original definition to consider some essential results on Hom-Lie algebroids and discuss some new examples. However, it turns out that for such results such a modification is not required. There are several attempts on defining representations and cohomology of Hom-Lie algebroids. As expected from the case of Hom-Lie algebras, there is no unique cohomology for Hom-Lie algebroids. We discuss about representations and cohomology of Hom-Lie algebroids that yields a differential calculus and dual description for Hom-Lie algebroids. Later on, we summarise the relationship between Hom-Lie algebroids and Hom-Gerstenhaber algebras.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abad, C.A., Crainic, M.: Representations up to homotopy of Lie algebroids. J. Reine Angew. Math. 663, 91–126 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Aizawa, N., Sato, H.-T.: \(q\)-deformation of the Virasoro algebra with central extension. Phys. Lett. B 256(2), 185–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras. J. Lie Theory 21(4), 813–836 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76, 38–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf Algebras. Commun. Algebra 39(6), 2216–2240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L., Sheng, Y.: Purely Hom-Lie bialgebra. Sci. China Math. (2018)

    Google Scholar 

  7. Cai, L., Liu, J., Sheng, Y.: Hom-Lie algebroids, Hom-Lie bialgebroids and Hom-Courant algebroids. J. Geom. Phys. 121, 15–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaichian, M., Kulish, P., Lukierski, J.: \(q\)-deformed Jacobi identity, \(q\)-oscillators and \(q\)-deformed infinite-dimensional algebras. Phys. Lett. B 237, 401–406 (1990)

    Article  MathSciNet  Google Scholar 

  9. Chaichian, M., Isaev, A.P., Lukierski, J., Popowicz, Z., Prešnajder, P.: \(q\)-deformations of Virasoro algebra and conformal dimensions. Phys. Lett. B 262(1), 32–38 (1991)

    Article  MathSciNet  Google Scholar 

  10. Chakrabarti, R., Jagannathan, R.: A \((p, q)\)-deformed Virasoro algebra. J. Phys. A 25(9), 2607–2614 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crainic, M., Fernandes, R.L.: Lectures on integrability of Lie brackets. Geom. Topol. Monogr. 17, 1–107 (2011)

    Google Scholar 

  12. Elchinger, O.: Formalité liée aux algébres enveloppantes et étude des algébres Hom-(co)Poisson. Thése de Doctorat, Université de Haute Alsace, November (2012)

    Google Scholar 

  13. Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups and algebraic deformations. In: Gerstenhaber M., Stasheff J. (eds.), Deformations Theory and Quantum Groups with Applications to Mathematical Physics. Contemporary Mathematics, vol. 134, 51–92. AMS, Providence (1992)

    Google Scholar 

  14. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78(2), 267–288 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79(2), 59–103 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerstenhaber, M.: On the deformation of rings and algebras II. Ann. Math. 84(2), 1–19 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gerstenhaber, M.: On the deformation of rings and algebras III. Ann. Math. 88(2), 1–34 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerstenhaber, M.: On the deformation of rings and algebras IV. Ann. Math. 99(2), 257–276 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartwig, J.T., Larsson, D., Silvestrov, S.D.: Deformations of Lie algebras using \(\sigma -\)derivations. J. Algebra 295, 314–361 (2006) (Preprint in Mathematical Sciences 2003:32, LUTFMA-5036-2003, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, 52 pp. (2003))

    Google Scholar 

  20. Hellström, L., Makhlouf, A., Silvestrov, S.D.: Universal algebra applied to hom-associative algebras, and more. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds.), Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics and Statistics, vol. 85, 157–199. Springer, Berlin, Heidelberg (2014)

    Google Scholar 

  21. Huebschmann, J.: Duality for Lie-Rinehart algebras and the modular class. J. Reine Angew. Math. 510, 103–159 (1999)

    Google Scholar 

  22. Huebschmann, J.: Lie-Rinehart Algebras, Descent, and Quantization. In: Janelidze, G., Pareigis, B. Tholen, W. (eds.), Galois theory, Hopf algebras, and semiabelian categories. Fields Institute Communications, vol. 43, 295–316. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  23. Huebschmann, J.: Poisson cohomology and quantization. J. Reine Angew. Math. 408, 57–113 (1990)

    Google Scholar 

  24. Huebschmann, J.: Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras. Ann. Inst. Fourier (Grenoble) 48, 425–440 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huebschmann, J.: Extensions of Lie-Rinehart algebras and cotangent bundle reduction. Proc. Lond. Math. Soc. 107(5), 1135–1172 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huebschmann, J.: Multi derivation Maurer-Cartan algebras and sh Lie-Rinehart algebras. J. Algebra 472, 437–479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Larsson, D., Silvestrov, S.D.: Quasi-Hom-Lie algebras, central extensions and \(2\)-cocycle-like identities. J. Algebra 288, 321–344 (2005) (Preprints in Mathematical Sciences 2004:3, LUTFMA-5038-2004, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2004))

    Google Scholar 

  28. Larsson, D., Silvestrov, S.D.: Quasi-Lie algebras. In: Noncommutative Geometry and Representation Theory in Mathematical Physics. Contemporary Mathematics, vol. 391, 241–248. American Mathematical Society, Providence, RI (2005) (Preprints in Mathematical Sciences 2004:30, LUTFMA-5049-2004, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2004))

    Google Scholar 

  29. Larsson, D., Silvestrov, S.D.: Graded quasi-Lie agebras. Czechoslov. J. Phys. 55, 1473–1478 (2005)

    Article  Google Scholar 

  30. Larsson, D., Silvestrov, S.D.: Quasi-deformations of \(sl_2(\mathbb{F})\) using twisted derivations. Commun. Algebra 35, 4303–4318 (2007)

    Article  MATH  Google Scholar 

  31. Larsson, D., Sigurdsson, G., Silvestrov, S.D.: Quasi-Lie deformations on the algebra \(\mathbb{F}[t]/(t^N)\). J. Gen. Lie Theory Appl. 2, 201–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Laurent-Gengoux, C., Teles, J.: Hom-Lie algebroids. J. Geom. Phys. 68, 69–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laurent-Gengoux, C., Makhlouf, A., Teles, J.: Universal algebra of a Hom-Lie algebra and group-like elements. J. Pure Appl. Algebra 222(5), 1139–1163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids. Lecture Note Series, vol. 213. London Mathematical Society (2005)

    Google Scholar 

  35. Mackenzie, K.: Double Lie algebroids and second-order geometry I. Adv. Math. 94(2), 180–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Makhlouf, A., Silvestrov, S.D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(2), 51–64 (2008) (Preprints in Mathematical Sciences 2006:10, LUTFMA-5074-2006, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2006))

    Google Scholar 

  37. Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, 189–206 (2009)

    Google Scholar 

  38. Makhlouf, A.: Hom-alternative algebras and Hom-Jordan algebras. Int. Electron. J. Algebra 8, 177–190 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Makhlouf, A., Silvestrov, S.: Hom-algebras and Hom-coalgebras. J. Algebra Its Appl. 9, 553–589 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Makhlouf, A., Silvestrov, S.: Notes on \(1\)-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22(4), 715–759 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mandal, A., Mishra, S.K.: Hom-Lie-Rinehart algebras. Commun. Algebra 46(9), 3722–3744 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mandal, A., Mishra, S.K.: On Hom-Gerstenhaber algebras, and Hom-Lie algebroids. J. Geom. Phys. 133, 287–302 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mehta, R.A.: Lie algebroid modules and representations up to homotopy. Indag. Math. 25, 1122–1134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Merati, S., Farhangdoost, M.R.: Representation up to homotopy of Hom-Lie algebroids. Int. J. Geom. Methods Mod. Phys. 15(5), 1850074 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Merati, S., Farhangdoost, M.R.: Representation and central extension of Hom-Lie algebroids. J. Algebra Its Appl. 17(11), 1850219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nakamura, T.: Hom-Poisson-Nijenhuis structures on Hom-Lie algebroids and Hom-Dirac structures on Hom-Courant algebroids. arXiv:1907.05004v1 [math.SG]

  47. Peyghan, E., Baghban, A., Sharahi, E.: Linear Poisson structures and Hom-Lie algebroids. Revista De La Unión Math. Argent. 60(2), 299–313 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Polychronakos, A.P.: Consistency conditions and representations of a \(q\)-deformed Virasoro algebra. Phys. Lett. B 256(1), 35–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Richard, L., Silvestrov, S.D.: Quasi-Lie structure of \(\sigma \)-derivations of \(\mathbb{C}[t^{\pm 1}]\). J. Algebra 319(3), 1285–1304 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sato, H.T.: Realizations of \(q\)-deformed Virasoro algebra. Prog. Theor. Phys. 89(2), 531–544 (1993)

    Article  MathSciNet  Google Scholar 

  51. Sato, H.T.: \(q\)-Virasoro operators from an analogue of the Noether currents. Z. Phys. C 70(2), 349–355 (1996)

    Article  MathSciNet  Google Scholar 

  52. Sato, H.T.: OPE formulae for deformed super-Virasoro algebras. Nucl. Phys. B 471, 553–569 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schwarzbach, Y.K.: Exact Gerstenhaber algebras and Lie bialgebroid. Acta Appl. Math. 41, 153–165 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sheng, Y.: Representation of Hom-Lie algebras. Algebr. Reprensent. Theory 15(6), 1081–1098 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sheng, Y., Xiong, Z.: On Hom-Lie algebras. Linear Multilinear Algebra 63(6), 2379–2395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sigurdsson, G., Silvestrov, S.: Graded quasi-Lie algebras of Witt type. Czechoslov. J. Phys. 56, 1287–1291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sigurdsson, G., Silvestrov, S.: Lie color and Hom-Lie algebras of Witt type and their central extensions. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, 247–255. Springer, Berlin (2009)

    Google Scholar 

  58. Vaintrob, A.Y.: Lie algebroids and homological vector fields. Uspekhi Mat. Nauk 52(2(314)), 161–162 (1997)

    Google Scholar 

  59. Xiong, Z.: Equivalent description of Hom-Lie algebroids. Adv. Math. Phys. Article ID 8417516, 8 pp. (2018)

    Google Scholar 

  60. Xu, P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200, 545–560 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yau, D.: Hom-algebras and homology. J. Lie Theory 19(2), 409–421 (2009)

    MathSciNet  MATH  Google Scholar 

  62. Yau, D.: Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8, 45–64 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Zhang, Q., Yu, H., Wang, C.: Hom-Lie algebroids and hom-left-symmetric algebroids. J. Geom. Phys. 116, 187–203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Satyendra Kumar Mishra is grateful to the research environment in Mathematics and Applied Mathematics (MAM), Division of Applied Mathematics at the School of Education, Culture and Communication at Mälardalen University, Västerås, Sweden for providing support and excellent research environment during his visit to Mälardalen University when part of the work on this paper has been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Kumar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, S.K., Silvestrov, S. (2020). A Review on Hom-Gerstenhaber Algebras and Hom-Lie Algebroids. In: Silvestrov, S., Malyarenko, A., Rančić, M. (eds) Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-41850-2_11

Download citation

Publish with us

Policies and ethics