Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 94))

Abstract

The copper-containing hemocyanins are proteins responsible for the binding, transportation and storage of dioxygen within the blood (hemolymph) of many invertebrates. Several additional functions have been attributed to both arthropod and molluscan hemocyanins, including (but not limited to) enzymatic activity (namely phenoloxidase), hormone transport, homeostasis (ecdysis) and hemostasis (clot formation). An important secondary function of hemocyanin involves aspects of innate immunity—such as acting as a precursor of broad-spectrum antimicrobial peptides and microbial/viral agglutination. In this chapter, we present the reader with an up-to-date synthesis of the known functions of hemocyanins and the structural features that facilitate such activities.

This chapter is dedicated to the work and fond memory of the late Professor Heinz Decker (1950–2018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K, Hirata T, Nishioka T et al (2003) Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase-like enzyme. Comp Biochem Phys B 134(1):135–141

    Article  Google Scholar 

  • Adachi K, Endo H, Watanabe T et al (2005a) Hemocyanin in the exoskeleton of crustaceans: enzymatic properties and immunolocalization. Pigment Cell Res 18(2):136–143

    Article  CAS  PubMed  Google Scholar 

  • Adachi K, Wakamatsu K, Ito S et al (2005b) An oxygen transporter hemocyanin can act on the late pathway of melanin synthesis. Pigment Cell Res 18(3):214–219

    Article  CAS  PubMed  Google Scholar 

  • Aguilera F, McDougall C, Degnan BM (2013) Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa. BMC Evol Biol 13(1):96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alpuche J, Pereyra A, Mendoza-Hernández G et al (2010) Purification and partial cnharacterization of an agglutinin from Octopus maya serum. Comp Biochem Phys B 156(1):1–5

    Article  CAS  Google Scholar 

  • Baird S, Kelly SM, Price NC et al (2007) Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation. BBA Proteins Proteom 1774(11):1380–1394

    Article  CAS  Google Scholar 

  • Besser K, Malyon GP, Eborall WS et al (2018) Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceans. Nat Commun 9(1):5125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonchuen P, Jaree P, Tassanakajon A et al (2018) Hemocyanin of Litopenaeus vannamei agglutinates Vibrio parahaemolyticus AHPND (VPAHPND) and neutralizes its toxin. Dev Comp Immunol 84:371–381

    Article  CAS  PubMed  Google Scholar 

  • Boone WR, Schoffeniels E (1979) Hemocyanin synthesis during hypo-osmotic stress in the shore crab Carcinus maenas (L.). Comp Biochem Physiol B 63(2):207–214

    Google Scholar 

  • Bourchookarn A, Havanapan PO, Thongboonkerd V et al (2008) Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. BBA Proteins Proteom 1784(3):504–511

    Article  CAS  Google Scholar 

  • Brown-Peterson NJ, Larkin P, Denslow N et al (2005) Molecular indicators of hypoxia in the blue crab Callinectes sapidus. Mar Ecol Prog Ser 286:203–215

    Article  CAS  Google Scholar 

  • Burmester T (1999) Evolution and function of the insect hexamerins. Eur J Entomol 96:213–226

    CAS  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172(2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2015) Evolution of respiratory proteins across the Pancrustacea. Integr Comp Biol 55(5):792–801

    Article  CAS  PubMed  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198(1):116–126

    Article  CAS  PubMed  Google Scholar 

  • Cerenius L, Lee BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29(6):263–271

    Article  CAS  PubMed  Google Scholar 

  • Cerenius L, Babu R, Söderhäll K et al (2010a) In vitro effects on bacterial growth of phenoloxidase reaction products. J Invert Pathol 103(1):21–23

    Article  CAS  Google Scholar 

  • Cerenius L, Kawabata SI, Lee BL et al (2010b) Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35(10):575–583

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Lee DG (2014) Antifungal activity and pore-forming mechanism of astacidin 1 against Candida albicans. Biochimie 105:58–63

    Article  CAS  PubMed  Google Scholar 

  • Chongsatja PO, Bourchookarn A, Lo CF et al (2007) Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics 7(19):3592–3601

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Zhang CT, Maggiora GM (1997) Disposition of amphiphilic helices in heteropolar environments. Proteins: Struct Funct Bioinform 28(1):99–108

    Google Scholar 

  • Coates CJ (2012) Hemocyanin-derived phenoloxidase; biochemical and cellular investigations of innate immunity. Ph.D. thesis. http://hdl.handle.net/1893/12228

  • Coates CJ, Albalat (2014) Engaging with strategies to impede post-mortem hyperpigmentation in commercial crustaceans. In: Hay RM (ed) Shellfish: human consumption, health implications and conservation concerns. Nova Science Publishers, pp 169–194. ISBN: 978-163321196-4, 978-163321195-7

    Google Scholar 

  • Coates CJ, Decker H (2017) Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 74(2):293–317

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Nairn J (2013) Hemocyanin-derived phenoloxidase activity: a contributing factor to hyperpigmentation in Nephrops norvegicus. Food Chem 140(1–2):361–369

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Nairn J (2014) Diverse immune functions of hemocyanins. Dev Comp Immunol 45(1):43–55

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Talbot J (2018) Hemocyanin-derived phenoloxidase reaction products display anti-infective properties. Dev Comp Immunol 86:47–51

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Kelly SM, Nairn J (2011) Possible role of phosphatidylserine–hemocyanin interaction in the innate immune response of Limulus polyphemus. Dev Comp Immunol 35(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Bradford EL, Krome CA et al (2012) Effect of temperature on biochemical and cellular properties of captive Limulus polyphemus. Aquaculture 334:30–38

    Article  CAS  Google Scholar 

  • Coates CJ, Whalley T, Wyman M et al (2013) A putative link between phagocytosis-induced apoptosis and hemocyanin-derived phenoloxidase activation. Apoptosis 18(11):1319–1331

    Article  CAS  PubMed  Google Scholar 

  • Cong Y, Zhang Q, Woolford D et al (2009) Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure 17(5):749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Paiva EM, Schrago CG, Coates CJ et al (2018) Discovery of novel hemocyanin-like genes in metazoans. Biol Bull 235(3):134–151

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Föll R (2000) Temperature adaptation influences the aggregation state of hemocyanin from Astacus leptodactylus. Comp Biochem Physiol A 127(2):147–154

    Article  CAS  Google Scholar 

  • Decker H, Rimke T (1998) Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem 273(40):25889–25892

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25(8):392–397

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Ryan M, Jaenicke E et al (2001) SDS-induced phenoloxidase activity of hemocyanins from limulus polyphemus, eurypelma californicum, and cancer magister. J Biol Chem 276(21):17796–17799

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Hellmann N, Jaenicke E et al (2007) Minireview: recent progress in hemocyanin research. Integr Comp Biol 47(4):631–644

    Article  CAS  PubMed  Google Scholar 

  • Decker H, Solem E, Tuczek F (2018) Are glutamate and asparagine necessary for tyrosinase activity of type-3 copper proteins? Inorg Chim Acta 481:32–37

    Article  CAS  Google Scholar 

  • Destoumieux-Garzón D, Saulnier D, Garnier J et al (2001) Crustacean immunity antifungal peptides are generated from the c terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem 276(50):47070–47077

    Article  PubMed  Google Scholar 

  • Dolashka P, Velkova L, Shishkov S et al (2010) Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. Carbohydr Res 345(16):2361–2367

    Article  CAS  PubMed  Google Scholar 

  • Dolashka P, Moshtanska V, Borisova V et al (2011) Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa. Peptides 32(7):1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Dolashka-Angelova P, Lieb B, Velkova L et al (2009) Identification of glycosylated sites in Rapana hemocyanin by mass spectrometry and gene sequence, and their antiviral effect. Bioconjug Chem 20(7):1315–1322

    Article  CAS  PubMed  Google Scholar 

  • García-Carreño FL, Cota K, Navarrete del Toro MA (2008) Phenoloxidase activity of hemocyanin in whiteleg shrimp Penaeus vannamei: conversion, characterization of catalytic properties, and role in postmortem melanosis. J Agricul Food Chem 56(15):6454–6459

    Article  CAS  Google Scholar 

  • Gatsogiannis C, Hofnagel O, Markl J et al (2015) Structure of mega-hemocyanin reveals protein origami in snails. Structure 23(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Glazer L, Tom M, Weil S et al (2013) Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith. J Exp Biol 216(10):1898–1904

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Zhao X, Zhang Y, Wang Z, Zhong M, Li S, Lun J, (2013) Evidences of SNPs in the variable region of hemocyanin Ig-like domain in shrimp litopenaeus vannamei. Fish Shellfish Immunol 35(5):1532–1538

    Google Scholar 

  • Hartmann H, Decker H (2004) Small-angle scattering techniques for analyzing conformational transitions in hemocyanins. In: Methods in enzymology, vol 379. Academic Press, pp 81–106

    Google Scholar 

  • Havanapan PO, Kanlaya R, Bourchookarn A et al (2009) C-terminal hemocyanin from hemocytes of Penaeus vannamei interacts with ERK1/2 and undergoes serine phosphorylation. J Proteome Res 8(5):2476–2483

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke E, Decker H (2008) Kinetic properties of catecholoxidase activity of tarantula hemocyanin. FEBS J 275(7):1518–1528

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke E, Föll R, Decker H (1999) Spider hemocyanin binds ecdysone and 20-OH-ecdysone. J Biol Chem 274(48):34267–34271

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke E, Fraune S, May S et al (2009) Is activated hemocyanin instead of phenoloxidase involved in immune response in woodlice? Dev Comp Immunol 33(10):1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Tan NS, Ho B et al (2007) Respiratory protein–generated reactive oxygen species as an antimicrobial strategy. Nat Immunol 8(10):1114

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Matsui T, Gatsogiannis C et al (2018) Molluscan hemocyanin: structure, evolution, and physiology. Biophys Rev 10(2):191–202

    Article  CAS  PubMed  Google Scholar 

  • Klotz IM, Schlesinger AH, Tietze F (1948) Comparison of the binding ability of hemocyanin and serum albumin for organic ions. Biol Bull 94(1):40–44

    Article  CAS  PubMed  Google Scholar 

  • Kuballa AV, Elizur A (2008) Differential expression profiling of components associated with exoskeletal hardening in crustaceans. BMC Genom 9(1):575

    Article  CAS  Google Scholar 

  • Kuballa AV, Holton TA, Paterson B et al (2011) Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus. BMC Genom 12(1):147

    Article  CAS  Google Scholar 

  • Le Bris C, Cudennec B, Dhulster P et al (2016) Melanosis in Penaeus monodon: involvement of the laccase-like activity of hemocyanin. J Agricul Food Chem 64(3):663–670

    Article  CAS  Google Scholar 

  • Lee SY, Lee BL, Söderhäll K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278(10):7927–7933

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee BL, Söderhäll K (2004) Processing of crayfish hemocyanin subunits into phenoloxidase. Biochem Biophys Res Commun 322(2):490–496

    Google Scholar 

  • Lei K, Li F, Zhang M et al (2008) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 32(7):808–813

    Article  CAS  PubMed  Google Scholar 

  • Li C, Wang F, Aweya JJ et al (2018) Trypsin of Litopenaeus vannamei is required for the generation of hemocyanin-derived peptides. Dev Comp Immunol 79:95–104

    Article  CAS  PubMed  Google Scholar 

  • Markl J (2013) Evolution of molluscan hemocyanin structures. BBA Proteins Proteom 1834(9):1840–1852

    Article  CAS  Google Scholar 

  • Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. In: Blood and tissue oxygen carriers. Springer, Berlin, pp 325–376

    Google Scholar 

  • Martín-Durán JM, de Mendoza A, Sebé-Pedrós A et al (2013) A broad genomic survey reveals multiple origins and frequent losses in the evolution of respiratory hemerythrins and hemocyanins. Genome Biol Evol 5(7):1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Alvarez O, Gómez-Guillén C, Montero P (2008) Presence of hemocyanin with diphenoloxidase activity in deepwater pink shrimp (Parapenaeus longirostris) post mortem. Food Chem 107(4):1450–1460

    Article  CAS  Google Scholar 

  • Nagai T, Kawabata SI (2000) A link between blood coagulation and prophenol oxidase activation in arthropod host defense. J Biol Chem 275(38):29264–29267

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Osaki T, Kawabata SI (2001) Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 276(29):27166–27170

    Article  CAS  PubMed  Google Scholar 

  • Naresh KN, Sreekumar A, Rajan SS (2015) Structural insights into the interaction between molluscan hemocyanins and phenolic substrates: an in silico study using docking and molecular dynamics. J Mol Graph Model 61:272–280

    Article  CAS  PubMed  Google Scholar 

  • Pan D, He N, Yang Z et al (2005) Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev Comp Immunol 29(2):103–112

    Article  CAS  PubMed  Google Scholar 

  • Pan JY, Zhang YL, Wang SY et al (2008) Dodecamer is required for agglutination of Litopenaeus vannamei hemocyanin with bacterial cells and red blood cells. Mar Biotechnol 10(6):645–652

    Article  CAS  Google Scholar 

  • Paul RJ, Pirow R (1998) The physiological significance of respiratory proteins in invertebrates. Zoology 100(4):298–306

    CAS  Google Scholar 

  • Paul R, Bergner B, Pfeffer-Seidl A et al (1994) Gas transport in the haemolymph of arachnids-oxygen transport and the physiological role of haemocyanin. J Exp Biol 188(1):25–46

    CAS  PubMed  Google Scholar 

  • Petit VW, Rolland JL, Blond A et al (2016) A hemocyanin-derived antimicrobial peptide from the penaeid shrimp adopts an alpha-helical structure that specifically permeabilizes fungal membranes. BBA Gen Subj 1860(3):557–568

    Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Rattanarojpong T, Wang HC, Lo CF et al (2007) Analysis of differently expressed proteins and transcripts in gills of Penaeus vannamei after yellow head virus infection. Proteomics 7(20):3809–3814

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Basha AN, Taju G et al (2010) Clearance of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) and immunological changes in experimentally injected Macrobrachium rosenbergii. Fish Shellfish Immunol 28(3):428–433

    Article  CAS  PubMed  Google Scholar 

  • Rehm P, Pick C, Borner J et al (2012) The diversity and evolution of chelicerate hemocyanins. BMC Evol Biol 12(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riciluca KCT, Sayegh RSR, Melo RL et al (2012) Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph. Results Immunol 2:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley AF, Powell A (2007) Invertebrate immune systems–specific, quasi-specific, or nonspecific? J Immunol 179(11):7209–7214

    Article  CAS  PubMed  Google Scholar 

  • Salvato B, Santamaria M, Beltramini M et al (1998) The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity. Biochem 37(40):14065–14077

    Article  CAS  Google Scholar 

  • Sanggaard KW, Dyrlund TF, Bechsgaard JS et al (2016) The spider hemolymph clot proteome reveals high concentrations of hemocyanin and von Willebrand factor-like proteins. BBA Proteins Proteom 1864(2):233–241

    Google Scholar 

  • Schenk S, Schmidt J, Hoeger U, Decker H (2015) Lipoprotein-induced phenoloxidase-activity in tarantula hemocyanin. BBA Proteins Proteom 1854(8):939–949

    Article  CAS  Google Scholar 

  • Shi XZ, Li XC, Wang S et al (2010) Transcriptome analysis of hemocytes and hepatopancreas in red swamp crayfish, Procambarus clarkii, challenged with white spot syndrome virus. Invertebrate Surviv J 7(1):119–131

    Google Scholar 

  • Siddiqui NI, Akosung RF, Gielens C (2006) Location of intrinsic and inducible phenoloxidase activity in molluscan hemocyanin. Biochem Biophys Res Commun 348(3):1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Šobotník J, Bourguignon T, Hanus R et al (2012) Explosive backpacks in old termite workers. Science 337(6093):436

    Article  CAS  PubMed  Google Scholar 

  • Spicer JI, Hodgson E (2003) Structural basis for salinity-induced alteration in oxygen binding by haemocyanin from the estuarine amphipod Chaetogammarus marinus (L.). Physiol Biochem Zool 76(6):843–849

    Google Scholar 

  • Tanner CA, Burnett LE, Burnett KG (2006) The effects of hypoxia and pH on phenoloxidase activity in the Atlantic blue crab, Callinectes sapidus. Comp Biochem Physiol A 144(2):218–223

    Article  CAS  Google Scholar 

  • Terwilliger NB (2007) Hemocyanins and the immune response: defense against the dark arts. Integr Comp Biol 47(4):662–665

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger NB (2015) Oxygen transport proteins in crustacean: hemocyanin and hemoglobin. In: Chang ES, Thiel M (eds) The natural history of the crustacea: physiology. Oxford University Press. ISBN: 9780199832415

    Google Scholar 

  • Terwilliger NB, Ryan MC (2006) Functional and phylogenetic analyses of phenoloxidases from brachyuran (Cancer magister) and branchiopod (Artemia franciscana, Triops longicaudatus) crustaceans. Biol Bull 210(1):38–50

    Article  CAS  PubMed  Google Scholar 

  • Theopold U, Schmidt O, Söderhäll K et al (2004) Coagulation in arthropods: defence, wound closure and healing. Trends Immunol 25(6):289–294

    Article  CAS  PubMed  Google Scholar 

  • Vance JE, Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44(4):207–234

    Article  CAS  PubMed  Google Scholar 

  • Wang DL, Sun T, Zuo D et al (2013) Cloning and tissue expression of hemocyanin gene in Cherax quadricarinatus during white spot syndrome virus infection. Aquaculture 410:216–224

    Article  CAS  Google Scholar 

  • Whitten MM, Coates CJ (2017) Re-evaluation of insect melanogenesis research: views from the dark side. Pigment Cell Melanoma Res 30(4):386–401

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Clark WM, Cain JA et al (2012) Effects of known phenoloxidase inhibitors on hemocyanin-derived phenoloxidase from Limulus polyphemus. Comp Biochem Physiol B 163(3–4):303–308

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Qiao J, Zhang Y et al (2011a) Hemolytic properties of hemocyanin from mud crab Scylla serrata. J Shellfish Res 30(3):957–963

    Article  Google Scholar 

  • Yan F, Zhang Y, Jiang R et al (2011b) Identification and agglutination properties of hemocyanin from the mud crab (Scylla serrata). Fish Shellfish Immunol 30(1):354–360

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Wang Z, Wei M et al (2019) Analysis of Litopenaeus vannamei hemocyanin interacting proteins reveals its role in hemolymph clotting. J Proteomics 201:57–64

    Article  CAS  PubMed  Google Scholar 

  • Zhan S, Aweya JJ, Wang F et al (2019) Litopenaeus vannamei attenuates white spot syndrome virus replication by specific antiviral peptides generated from hemocyanin. Dev Comp Immunol 91:50–61

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang C, Qin Q (2004a) Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon. Antiviral Res 61(2):93–99

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang S, Peng X (2004b) Identification of a type of human IgG-like protein in shrimp Penaeus vannamei by mass spectrometry. J Exp Mar Biol Ecol 301(1):39–54

    Article  CAS  Google Scholar 

  • Zhang Y, Wang S, Xu A et al (2006) Affinity proteomic Approach for identification of an IgA-like protein in Litopenaeus vannamei and study on its Agglutination characterization. J Proteome Res 5(4):815–821

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yan F, Hu Z et al (2009) Hemocyanin from shrimp Litopenaeus vannamei shows hemolytic activity. Fish Shellfish Immunol 27(2):330–335

    Article  CAS  PubMed  Google Scholar 

  • Zhang YL, Peng B, Li H et al (2017a) C-terminal domain of hemocyanin, a major antimicrobial protein from Litopenaeus vannamei: structural homology with immunoglobulins and molecular diversity. Front Immunol 8:611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang F, Chen C et al (2017b) Glycosylation of hemocyanin in Litopenaeus vannamei is an antibacterial response feature. Immunol Lett 192:42–47

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Guo L, Zhang Y et al (2012) SNPs of hemocyanin C-terminal fragment in shrimp Litopenaeus vannamei. FEBS Lett 586(4):403–410

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhuang J, Feng H et al (2014) Cryo-EM structure of isomeric molluscan hemocyanin triggered by viral infection. PLoS ONE 9(6):e98766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Coates CJ, Zhu H et al (2015) Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev Comp Immunol 49(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Zlateva T, Di Muro P, Salvato B et al (1996) The o-diphenol oxidase activity of arthropod hemocyanin. FEBS Lett 384(3):251–254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We should like to thank Prof Andrew Rowley (Swansea University) for providing comments on the text. No direct funding was provided to undertake this review; however, the content was presented and discussed at the SafeAqua workshop on Invertebrate Immunology held in Thailand, July 2019. The SafeAqua project has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement No. 734486 (CJC is the PI for Swansea University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Coates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coates, C.J., Costa-Paiva, E.M. (2020). Multifunctional Roles of Hemocyanins. In: Hoeger, U., Harris, J. (eds) Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcellular Biochemistry, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-030-41769-7_9

Download citation

Publish with us

Policies and ethics