Skip to main content

Impacts of Human-Induced Pollution on Wild Fish Welfare

  • Chapter
  • First Online:
The Welfare of Fish

Part of the book series: Animal Welfare ((AWNS,volume 20))

  • 1940 Accesses

Abstract

The natural environment has been altered by anthropogenic actions for several centuries. For example, land clearing, water diversion and abstraction for agriculture have changed aquatic ecosystems, as have inputs from various diffuse and point-source pollution sources. The alteration of natural waterbodies leads to water quality and habitat changes that ultimately impact the welfare of resident fishes and may compromise their existence. In this chapter, we review different classes of pollutants and provide key examples of impacts observed in wild fish populations from freshwater and marine environments worldwide. This includes case studies on major pollution events and key pollution sources. Impacts ranging from direct toxicity and physiological perturbations to behavioural changes and alterations in species compositions have all been documented, highlighting the need for on-going management of anthropogenic inputs to aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril SIM, Costa PG, Bianchini A (2018) Metal accumulation and expression of genes encoding for metallothionein and copper transporters in a chronically exposed wild population of the fish Hyphessobrycon luetkenii. Comp Biochem Physiol C-Toxicol Pharmacol 211:25–31

    CAS  PubMed  Google Scholar 

  • Akortia E, Okonkwo JO, Lupankwa M, Osae SD, Daso AP, Olukunle OI, Chaudhary A (2016) A review of sources, levels, and toxicity of polybrominated diphenyl ethers (PBDEs) and their transformation and transport in various environmental compartments. Environ Rev 24:253–273

    CAS  Google Scholar 

  • Alabaster JS, Lloyd RS (1982) Water quality criteria for freshwater fish, 2nd edn. Butterworths, London

    Google Scholar 

  • Alexander TJ, Vonlanthen P, Seehausen O (2017) Does eutrophication-driven evolution change aquatic ecosystems? Philos Trans R Soc B 372:20160041

    Google Scholar 

  • Arechavala-Lopez P, Sæther BS, Marhuenda-Egea F, Sanchez-Jerez P, Uglem I (2015) Assessing the influence of salmon farming through total lipids, fatty acids, and trace elements in the liver and muscle of wild saithe Pollachius virens. Mar Coast Fish 7:59–67

    Google Scholar 

  • Bagdonas K, Humborstad O-B, Løkkeborg S (2012) Capture of wild saithe (Pollachius virens) and cod (Gadus morhua) in the vicinity of salmon farms: three pot types compared. Fish Res 134–136:1–5

    Google Scholar 

  • Baldigo BP, Sloan RJ, Smith SB, Denslow ND, Blazer VS, Gross TS (2006) Polychlorinated biphenyls, mercury, and potential endocrine disruption in fish from the Hudson River, New York, USA. Aquat Sci 68:206–228

    CAS  Google Scholar 

  • Barbee NC, Ganio K, Swearer SE (2014) Integrating multiple bioassays to detect and assess impacts of sublethal exposure to metal mixtures in an estuarine fish. Aquat Toxicol 152:244–255

    CAS  PubMed  Google Scholar 

  • Belenguer V, Martinez-Capel F, Masiá A, Picó Y (2014) Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (Eastern Spain). J Hazard Mater 265:271–279

    CAS  PubMed  Google Scholar 

  • Beusen AHW, Bouwman AF, Van Beek LPH, Mogollon JM, Middelburg JJ (2016) Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441–2451

    CAS  Google Scholar 

  • Beyer J, Trannum HC, Bakke T, Hodson PV, Collier TK (2016) Environmental effects of the Deepwater Horizon oil spill: a review. Mar Pollut Bull 110:28–51

    CAS  PubMed  Google Scholar 

  • Bille L, Binato G, Gabrieli C, Manfrin A, Pascoli F, Pretto T, Toffan A, Pozza MD, Angeletti R, Arcangeli G (2017) First report of a fish kill episode caused by pyrethroids in Italian freshwater. Forensic Sci Int 281:176–182

    CAS  PubMed  Google Scholar 

  • Björklund H, Bondestam J, Bylund G (1990) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86:359–367

    Google Scholar 

  • Blanchfield PJ, Kidd KA, Docker MF, Palace VP, Park BJ, Postma LD (2015) Recovery of a wild fish population from whole-lake additions of a synthetic estrogen. Environ Sci Technol 49:3136–3144

    CAS  PubMed  Google Scholar 

  • Bogevik AS, Natário S, Karlsen Ø, Thorsen A, Hamre K, Rosenlund G, Norberg B (2012) The effect of dietary lipid content and stress on egg quality in farmed Atlantic cod Gadus morhua. J Fish Biol 81:1391–1405

    CAS  PubMed  Google Scholar 

  • Brander SM, Gabler MK, Fowler NL, Connon RE, Schlenk D (2016) Pyrethroid pesticides as endocrine disruptors: molecular mechanisms in vertebrates with a focus on fishes. Environ Sci Technol 50:8977–8992

    CAS  PubMed  Google Scholar 

  • Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324:347–348

    CAS  PubMed  Google Scholar 

  • Budria A (2017) Beyond troubled waters: the influence of eutrophication on host-parasite interactions. Funct Ecol 31:1348–1358

    Google Scholar 

  • Buesseler K, Dai MH, Aoyama M, Benitez-Nelson C, Charmasson S, Higley K, Maderich V, Masque P, Morris PJ, Oughton D, Smith JN, Annual R (2017) Fukushima Daiichi-derived radionuclides in the ocean: transport, fate, and impacts. Annu Rev Mar Sci 9:173–203

    Google Scholar 

  • Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23

    CAS  Google Scholar 

  • Bustnes JO, Lie E, Herzke D, Dempster T, Bjørn PA, Nygård T, Uglem I (2010) Salmon farms as a source of organohalogenated contaminants in wild fish. Environ Sci Technol 44:8736–8743

    CAS  PubMed  Google Scholar 

  • Bustnes JO, Nygard T, Dempster T, Ciesielski T, Jenssen BM, Bjorn PA, Uglem I (2011) Do salmon farms increase the concentrations of mercury and other elements in wild fish? J Environ Monit 13:1687–1694

    CAS  PubMed  Google Scholar 

  • Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15(7):1917–1942

    PubMed  Google Scholar 

  • Callier MD, Byron CJ, Bengtson DA, Cranford PJ, Cross SF, Focken U, Jansen HM, Kamermans P, Kiessling A, Landry T, O’Beirn F, Petersson E, Rheault RB, Strand Ø, Sundell K, Svåsand T, Wikfors GH, McKindsey CW (2017) Attraction and repulsion of mobile wild organisms to finfish and shellfish aquaculture: a review. Rev Aquac 10:924. https://doi.org/10.1111/raq.12208

    Article  Google Scholar 

  • Checkley DM, Ayon P, Baumgartner TR, Bernal M, Coetzee JC, Emmett R, Guevara-Carrasco R, Hutchings L, Ibaibarriaga L, Nakata H, Oozeki Y, Planque B, Schweigert J, Stratoudakis Y, van der Lingen CD (2009) Habitats. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Clasen B, Loro VL, Murussi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743

    CAS  PubMed  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    CAS  Google Scholar 

  • Colborn T, Saal FSV, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colorni A, Diamant A, Eldar A, Kvitt H, Zlotkin A (2002) Streptococcus iniae infections in Red Sea cage-cultured and wild fishes. Dis Aquat Org 49:165–170

    Google Scholar 

  • Cook PM, Robbins JA, Endicott DD, Lodge KB, Guiney PD, Walker MK, Zabel EW, Peterson RE (2003) Effects of aryl hydrocarbon receptor-mediated early life stage toxicity on lake trout populations in Lake Ontario during the 20th century. Environ Sci Technol 37:3864–3877

    CAS  PubMed  Google Scholar 

  • Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116

    CAS  PubMed  Google Scholar 

  • DeBruyn AMH, Trudel M, Eyding N, Harding J, McNally H, Mountain R, Orr C, Urban D, Verenitch S, Mazumder A (2006) Ecosystemic effects of salmon farming increase mercury contamination in wild fish. Environ Sci Technol 40:3489–3493

    CAS  PubMed  Google Scholar 

  • Defo MA, Bernatchez L, Campbell PGC, Couture P (2018) Temporal variations in kidney metal concentrations and their implications for retinoid metabolism and oxidative stress response in wild yellow perch (Perca flavescens). Aquat Toxicol 202:26–35

    CAS  PubMed  Google Scholar 

  • Dempster T, Sanchez-Jerez P, Bayle-Sempere JT, Giminez-Casualdero F, Valle C (2002) Attraction of wild fish to sea-cage fish farms in the south-western Mediterranean Sea: spatial and short-term variability. Mar Ecol Prog Ser 242:237–252

    Google Scholar 

  • Dempster T, Uglem I, Sanchez-Jerez P, Fernandez-Jover D, Bayle-Sempere J, Nilsen R, Bjørn P (2009) Coastal salmon farms attract large and persistent aggregations of wild fish: an ecosystem effect. Mar Ecol Prog Ser 385:1–14

    Google Scholar 

  • Dempster T, Sanchez-Jerez P, Fernandez-Jover D, Bayle-Sempere JT, Nilsen R, Bjørn PA, Uglem I (2011) Proxy measures of fitness suggest coastal fish farms can act as population sources and not ecological traps for wild gadoid fish. PLoS One 6:e15646–e15646

    CAS  PubMed  PubMed Central  Google Scholar 

  • DePasquale E, Baumann H, Gobler CJ (2015) Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Mar Ecol Prog Ser 523:145–156

    CAS  Google Scholar 

  • Diamant A, Banet A, Ucko M, Colorni A, Knibb W, Kvitt H (2000) Mycobacteriosis in wild rabbitfish Siganus rivulatus associated with cage farming in the Gulf of Eilat, Red Sea. Dis Aquat Org 39:211–219

    CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    CAS  PubMed  Google Scholar 

  • Durrant CJ, Stevens JR, Hogstrand C, Bury NR (2011) The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the river Hayle, Cornwall, UK. Environ Pollut 159(12):3595–3603

    CAS  PubMed  Google Scholar 

  • Ervik A, Thorsen B, Eriksen V, Lunestad BT, Samuelsen OB (1994) Impact of administering antibacterial agents on wild fish and blue mussels Mytilus edulis in the vicinity of fish farms. Dis Aquat Org 18:45–51

    CAS  Google Scholar 

  • Fernandez-Jover D, Martinez-Rubio L, Sanchez-Jerez P, Bayle-Sempere JT, Lopez Jimenez JA, Martínez Lopez FJ, Bjørn P-A, Uglem I, Dempster T (2011) Waste feed from coastal fish farms: a trophic subsidy with compositional side-effects for wild gadoids. Estuar Coast Shelf Sci 91:559–568

    CAS  Google Scholar 

  • Fu D, Bridle A, Leef M, Norte Dos Santos C, Nowak B (2017) Hepatic expression of metal-related genes and gill histology in sand flathead (Platycephalus bassensis) from a metal contaminated estuary. Mar Environ Res 131:80–89

    CAS  PubMed  Google Scholar 

  • Gall SC, Thompson RC (2015) The impact of debris on marine life. Mar Pollut Bull 92:170–179

    CAS  PubMed  Google Scholar 

  • Giari L, Guerranti C, Perra G, Lanzoni M, Fano EA, Castaldelli G (2015) Occurrence of perfluorooctanesulfonate and perfluorooctanoic acid and histopathology in eels from north Italian waters. Chemosphere 118:117–123

    CAS  PubMed  Google Scholar 

  • Giguère A, Campbell PGC, Hare L, Cossu-Leguille C (2005) Metal bioaccumulation and oxidative stress in yellow perch (Perca flavescens) collected from eight lakes along a metal contamination gradient (Cd, Cu, Zn, Ni). Can J Fish Aquat Sci 62:563–577

    Google Scholar 

  • Glover KA, Sørvik AGE, Karlsbakk E, Zhang Z, Skaala Ø (2013) Molecular genetic analysis of stomach contents reveals wild Atlantic cod feeding on piscine reovirus (PRV) infected Atlantic salmon originating from a commercial fish farm. PLoS One 8:e60924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glover CN, Urbina MA, Harley RA, Lee JA (2016) Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus. Aquat Toxicol 174:199–207

    CAS  PubMed  Google Scholar 

  • Gobler CJ, Baumann H (2016) Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol Lett 12:20150976

    PubMed  PubMed Central  Google Scholar 

  • Guerrero-Bosagna C, Valladares L, Gore AC (2007) Endocrine disruptors, epigenetically induced changes, and transgenerational transmission of characters and epigenetic states. In: Gore AC (ed) Endocrine-disrupting chemicals: from basic research to clinical practice. Humana, Totowa, pp 175–189

    Google Scholar 

  • Hamilton PB, Cowx IG, Oleksiak MF, Griffiths AM, Grahn M, Stevens JR, Carvalho GR, Nicol E, Tyler CR (2016) Population-level consequences for wild fish exposed to sublethal concentrations of chemicals – a critical review. Fish 17(3):545–566

    Google Scholar 

  • Handy RD, Poxton MG (1993) Nitrogen pollution in mariculture – toxicity and excretion of nitrogenous compounds by marine fish. Rev Fish Biol Fish 3:205–241

    Google Scholar 

  • Hannan KD, Rummer JL (2018) Aquatic acidification: a mechanism underpinning maintained oxygen transport and performance in fish experiencing elevated carbon dioxide conditions. J Exp Biol 221:jeb154559

    PubMed  Google Scholar 

  • Harley RA, Glover CN (2014) The impacts of stress on sodium metabolism and copper accumulation in a freshwater fish. Aquat Toxicol 147:41–47

    CAS  PubMed  Google Scholar 

  • Harris CA, Hamilton PB, Runnalls TJ, Vinciotti V, Henshaw A, Hodgson D, Coe TS, Jobling S, Tyler CR, Sumpter JP (2011) The consequences of feminization in breeding groups of wild fish. Environ Health Perspect 119:306–311

    PubMed  Google Scholar 

  • Hawley KL, Rosten CM, Haugen TO, Christensen G, Lucas MC (2017) Freezer on, lights off! Environmental effects on activity rhythms of fish in the Arctic. Biol Lett 13:20170575

    PubMed  PubMed Central  Google Scholar 

  • Henry TB (2015) Ecotoxicology of polychlorinated biphenyls in fish – a critical review. Crit Rev Toxicol 45:643–661

    CAS  PubMed  Google Scholar 

  • Hesthagen T, Sevaldrud IH, Berger HM (1999) Assessment of damage to fish populations in Norwegian lakes due to acidification. Ambio 28:112–117

    Google Scholar 

  • Hesthagen T, Fjellheim A, Schartau AK, Wright RF, Saksgård R, Rosseland BO (2011) Chemical and biological recovery of Lake Saudlandsvatn, a formerly highly acidified lake in southernmost Norway, in response to decreased acid deposition. Sci Total Environ 409:2908–2916

    CAS  PubMed  Google Scholar 

  • Hoff PT, Van Campenhout K, de Vijver K, Covaci A, Bervoets L, Moens L, Huyskens G, Goemans G, Belpaire C, Blust R, De Coen W (2005) Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects. Environ Pollut 137:324–333

    CAS  PubMed  Google Scholar 

  • Holtze KE, Hutchinson NJ (1989) Lethality of low pH and Al to early life stages of six fish species inhabiting Precambrian shield waters in Ontario. Can J Fish Aquat Sci 46:1188–1202

    CAS  Google Scholar 

  • Huntingford FA, Kadri S (2008) Welfare and fish. In: Branson EJ (ed) Fish welfare. Blackwell, Oxford, pp 19–31

    Google Scholar 

  • Hurem S, Gomes T, Brede DA, Mayer I, Lobert VH, Mutoloki S, Gutzkow KB, Teien HC, Oughton D, Alestrom P, Lyche JL (2018) Gamma irradiation during gametogenesis in young adult zebrafish causes persistent genotoxicity and adverse reproductive effects. Ecotoxicol Environ Saf 154:19–26

    CAS  PubMed  Google Scholar 

  • Ikuta K, Suzuki Y, Kitamura S (2003) Effects of low pH on the reproductive behavior of salmonid fishes. Fish Physiol Biochem 28:407–410

    CAS  Google Scholar 

  • Incardona JP, Gardner LD, Linbo TL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz JD, French BL, Labenia JS, Laetz CA, Tagal M, Sloan CA, Elizur A, Benetti DD, Grosell M, Block BA, Scholz NL (2014) Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proc Natl Acad Sci USA 111:E1510–E1518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeppesen E, Kronvang B, Olesen JE, Audet J, Sondergaard M, Hoffmann CC, Andersen HE, Lauridsen TL, Liboriussen L, Larsen SE, Beklioglu M, Meerhoff M, Ozen A, Ozkan K (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663:1–21

    CAS  Google Scholar 

  • Jorgenson JL (2001) Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology and epidemiology in the United States. Environ Health Perspect 109:113–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy CJ (2011) The toxicology of metals in fishes. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 3. Academic, San Diego, pp 2061–2068

    Google Scholar 

  • Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104:8897–8901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong EY, Cheng SH, Yu KN (2016) Zebrafish as an in vivo model to assess epigenetic effects of ionizing radiation. Int J Mol Sci 17(12):2108

    PubMed Central  Google Scholar 

  • Lake PS (2000) Disturbance, patchiness, and diversity in streams. J N Am Benthol Soc 19:573–592

    Google Scholar 

  • Lazartigues A, Thomas M, Banas D, Brun-Bellut J, Cren-Olive C, Feidt C (2013) Accumulation and half-lives of 13 pesticides in muscle tissue of freshwater fishes through food exposure. Chemosphere 91:530–535

    CAS  PubMed  Google Scholar 

  • Leivestad H, Muniz IP (1976) Fish kill at low pH in a Norwegian river. Nature 259:391–392

    CAS  PubMed  Google Scholar 

  • Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jorgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW (2010) Exposure and effects assessment of persistent organohalogen contaminants in Arctic wildlife and fish. Sci Total Environ 408:2995–3043

    CAS  PubMed  Google Scholar 

  • Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566:333–349

    PubMed  Google Scholar 

  • Luczynska J, Paszczyk B, Luczynski MJ (2018) Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer’s health. Ecotoxicol Environ Saf 153:60–67

    CAS  PubMed  Google Scholar 

  • Madigan DJ, Baumann Z, Snodgrass OE, Dewar H, Berman-Kowalewski M, Weng KC, Nishikawa J, Dutton PH, Fisher NS (2017) Assessing Fukushima-derived radiocesium in migratory Pacific predators. Environ Sci Technol 51:8962–8971

    CAS  PubMed  Google Scholar 

  • Matthiessen P, Wheeler JR, Weltje L (2018) A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Crit Rev Toxicol 48:195–216

    CAS  PubMed  Google Scholar 

  • McKinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183

    CAS  PubMed  Google Scholar 

  • McNeil BI, Sasse TP (2016) Future Ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 529:383

    CAS  PubMed  Google Scholar 

  • McRae NK, Gaw S, Glover CN (2018) Effects of waterborne cadmium on metabolic rate, oxidative stress, and ion regulation in the freshwater fish, inanga (Galaxias maculatus). Aquat Toxicol 194:1–9

    CAS  PubMed  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    CAS  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Portner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    CAS  Google Scholar 

  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Kortzinger A (2013) Future Ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888

    CAS  Google Scholar 

  • Menz FC, Seip HM (2004) Acid rain in Europe and the United States: an update. Environ Sci Pol 7:253–265

    CAS  Google Scholar 

  • Mieiro CL, Pereira ME, Duarte AC, Pacheco M (2011) Brain as a critical target of mercury in environmentally exposed fish (Dicentrarchus labrax)—Bioaccumulation and oxidative stress profiles. Aquat Toxicol 103:233–240

    CAS  PubMed  Google Scholar 

  • Mills KH, Chalanchuk SM, Allan DJ (2000) Recovery of fish populations in Lake 223 from experimental acidification. Can J Fish Aquat Sci 57:192–204

    Google Scholar 

  • Mohmood I, Mieiro CL, Coelho JP, Anjum NA, Ahmad I, Pereira E, Duarte AC, Pacheco M (2012) Mercury-induced chromosomal damage in wild fish (Dicentrarchus labrax L.) Reflecting aquatic contamination in contrasting seasons. Arch Environ Contam Toxicol 63:554–562

    CAS  PubMed  Google Scholar 

  • Munday PL, Donelson JM, Dixson DL, Endo GGK (2009) Effects of ocean acidification on the early life history of a tropical marine fish. Proc R Soc B 276:3275–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murawski SA, Fleeger JW, Patterson WF, Hu CM, Daly K, Romero I, Toro-Farmer GA (2016) How did the Deepwater Horizon oil spill affect coastal and continental shelf ecosystems of the Gulf of Mexico? Oceanography 29:160–173

    Google Scholar 

  • Palace VP, Evans RE, Wautier KG, Mills KH, Blanchfield PJ, Park BJ, Baron CL, Kidd KA (2009) Interspecies differences in biochemical, histopathological, and population responses in four wild fish species exposed to ethynylestradiol added to a whole lake. Can J Fish Aquat Sci 66:1920–1935

    CAS  Google Scholar 

  • Pereira LS, Ribas JLC, Vicari T, Silva SB, Stival J, Baldan AP, Valdez Domingos FX, Grassi MT, Cestari MM, Silva de Assis HC (2016) Effects of ecologically relevant concentrations of cadmium in a freshwater fish. Ecotoxicol Environ Saf 130:29–36

    CAS  PubMed  Google Scholar 

  • Pistevos JCA, Nagelkerken I, Rossi T, Connell SD (2017) Ocean acidification alters temperature and salinity preferences in larval fish. Oecologia 183:545–553

    PubMed  Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    CAS  Google Scholar 

  • Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, Teh FC, Werorilangi S, Teh SJ (2015) Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep 5:14340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rummel CD, Loder MGJ, Fricke NF, Lang T, Griebeler EM, Janke M, Gerdts G (2016) Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull 102:134–141

    CAS  PubMed  Google Scholar 

  • Salze G, Tocher DR, Roy WJ, Robertson DA (2005) Egg quality determinants in cod (Gadus morhua L.): egg performance and lipids in eggs from farmed and wild broodstock. Aquac Res 36:1488–1499

    CAS  Google Scholar 

  • Samuelsen OB, Lunestad BT, Husevag B, Holleland T, Ervik A (1992) Residues of oxolinic acid in wild fauna following medication in fish farms. Dis Aquat Org 12:111–119

    CAS  Google Scholar 

  • Sanchez-Jerez P, Fernandez-Jover D, Uglem I, Arechavala-Lopez P, Dempster T, Bayle-Sempere JT, Valle Pérez C, Izquierdo D, Bjørn P-A, Nilsen R (2011) Coastal fish farms as fish aggregation devices (FADs). In: Bortone SA, Brandini FP, Fabi G, Otake S (eds) Artificial reefs in fishery management. CRC, Taylor & Francis Group, Boca Raton, pp 187–208

    Google Scholar 

  • Sazykina TG, Kryshev AI (2003) EPIC database on the effects of chronic radiation in fish: Russian/FSU data. J Environ Radioact 68:65–87

    CAS  PubMed  Google Scholar 

  • Schaefer J, Frazier N, Barr J (2016) Dynamics of near-coastal fish assemblages following the Deepwater Horizon oil spill in the northern Gulf of Mexico. Trans Am Fish Soc 145:108–119

    CAS  Google Scholar 

  • Schindler DW (1988) Effects of acid rain on freshwater ecosystems. Science 239:149–157

    CAS  PubMed  Google Scholar 

  • Sfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM (2015) Effect of heavy metals on fish larvae deformities: a review. Environ Res 137:246–255

    CAS  PubMed  Google Scholar 

  • Short JW, Geiger HJ, Haney JC, Voss CM, Vozzo ML, Guillory V, Peterson CH (2017) Anomalously high recruitment of the 2010 Gulf Menhaden (Brevoortia patronus) year class: evidence of indirect effects from the Deepwater Horizon blowout in the Gulf of Mexico. Arch Environ Contam Toxicol 73:76–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sloman KA (2007) Effects of trace metals on salmonid fish: the role of social hierarchies. Appl Anim Behav Sci 104:326–345

    Google Scholar 

  • Smeltz M, Rowland-Faux L, Ghiran C, Patterson WF, Garner SB, Beers A, Mievre Q, Kane AS, James MO (2017) A multi-year study of hepatic biomarkers in coastal fishes from the Gulf of Mexico after the Deepwater Horizon oil spill. Mar Environ Res 129:57–67

    CAS  PubMed  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    PubMed  Google Scholar 

  • Sumpter JP, Jobling S (2013) The occurrence, causes, and consequences of estrogens in the aquatic environment. Environ Toxicol Chem 32:249–251

    CAS  PubMed  Google Scholar 

  • Taranger GL, Karlsen Ø, Bannister RJ, Glover KA, Husa V, Karlsbakk E, Kvamme BO, Boxaspen KK, Bjørn PA, Finstad B et al (2015) Risk assessment of the environmental impact of Norwegian Atlantic salmon farming. ICES J Mar Sci 72:997–1021

    Google Scholar 

  • Thomas ORB, Barbee NC, Hassell KL, Swearer SE (2016) Smell no evil: copper disrupts the alarm chemical response in a diadromous fish, Galaxias maculatus. Environ Toxicol Chem 35:2209–2214

    CAS  PubMed  Google Scholar 

  • Tijani JO, Fatoba OO, Babajide OO, Petrik LF (2016) Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environ Chem Lett 14:27–49

    CAS  Google Scholar 

  • Trudeau V, Tyler C (2007) Endocrine disruption. Gen Comp Endocrinol 153:13–14

    CAS  PubMed  Google Scholar 

  • Tyler CR, Routledge EJ (1998) Oestrogenic effects in fish in English rivers with evidence of their causation. Pure Appl Chem 70:1795–1804

    CAS  Google Scholar 

  • UNEP (2001) Stockholm convention on persistent organic pollutants. United Nations Environment Programme. http://chm.pops.int

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105:15452–15457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vita R, Marin A, Madrid JA, Jimenez-Brinquis B, Cesar A, Marin-Guirao L (2004) Effects of wild fishes on waste exportation from a Mediterranean fish farm. Mar Ecol Prog Ser 277:253–261

    Google Scholar 

  • Wada T, Fujita T, Nemoto Y, Shimamura S, Mizuno T, Sohtome T, Kamiyama K, Narita K, Watanabe M, Hatta N, Ogata Y, Morita T, Igarashi S (2016) Effects of the nuclear disaster on marine products in Fukushima: an update after five years. J Environ Radioact 164:312–324

    CAS  PubMed  Google Scholar 

  • Wagner JT, Singh PP, Romney AL, Riggs CL, Minx P, Woll SC, Roush J, Warren WC, Brunet A, Podrabsky JE (2018) The genome of Austrofundulus limnaeus offers insights into extreme vertebrate stress tolerance and embryonic development. BMC Genomics 19:155

    PubMed  PubMed Central  Google Scholar 

  • Walker MK, Cook PM, Butterworth BC, Zabel EW, Peterson RE (1996) Potency of a complex mixture of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin in causing fish early life stage mortality. Fundam Appl Toxicol 30:178–186

    CAS  PubMed  Google Scholar 

  • Wang WX, Rainbow PS (2008) Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp Biochem Physiol C 148:315–323

    Google Scholar 

  • Wang SY, Lau K, Lai KP, Zhang JW, Tse ACK, Li JW, Tong Y, Chan TF, Wong CKC, Chiu JMY, Au DWT, Wong AST, Kong RYC, Wu RSS (2016) Hypoxia causes transgenerational impairments in reproduction of fish. Nat Commun 7:12114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wardrop P, Shimeta J, Nugegoda D, Morrison PD, Miranda A, Tang M, Clarke BO (2016) Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish. Environ Sci Technol 50:4037–4044

    CAS  PubMed  Google Scholar 

  • Warry FY, Reich P, Cook PLM, Mac Nally R, Woodland RJ (2018) The role of catchment land use and tidal exchange in structuring estuarine fish assemblages. Hydrobiologia 811:173–191

    Google Scholar 

  • Watts JEM, Schreier HJ, Lanska L, Hale MS (2017) The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs 15:158–158

    PubMed Central  Google Scholar 

  • Welch MJ, Munday PL (2016) Contrasting effects of ocean acidification on reproduction in reef fishes. Coral Reefs 35:485–493

    Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    CAS  PubMed  Google Scholar 

  • Wu RSS, Lam KS, Mackay DW, Lau TC, Yam V (1994) Impact of marine fish farming on water-quality and bottom sediment – a case-study in the subtropical environment. Mar Environ Res 38:115–145

    Google Scholar 

  • Xu YH, Peng H, Yang YQ, Zhang WS, Wang SL (2014) A cumulative eutrophication risk evaluation method based on a bioaccumulation model. Ecol Model 289:77–85

    CAS  Google Scholar 

  • Yi YJ, Tang CH, Yi T, Yang ZF, Zhang SH (2017) Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol Environ Saf 145:295–302

    CAS  PubMed  Google Scholar 

  • Zabel EW, Walker MK, Hornung MW, Clayton MK, Peterson RE (1995) Interactions of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners for producing rainbow-trout early-life stage mortality. Toxicol Appl Pharmacol 134:204–213

    CAS  PubMed  Google Scholar 

  • Zhou HL, Wu HF, Liao CY, Diao XP, Zhen JP, Chen LL, Xue QZ (2010) Toxicology mechanism of the persistent organic pollutants (POPs) in fish through AhR pathway. Toxicol Mech Methods 20:279–286

    CAS  PubMed  Google Scholar 

  • Zlotkin A, Hershko H, Eldar A (1998) Possible transmission of Streptococcus iniae from wild fish to cultured marine fish. Appl Environ Microbiol 64:4065–4067

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Hassell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassell, K., Barrett, L., Dempster, T. (2020). Impacts of Human-Induced Pollution on Wild Fish Welfare. In: Kristiansen, T., Fernö, A., Pavlidis, M., van de Vis, H. (eds) The Welfare of Fish. Animal Welfare, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-41675-1_20

Download citation

Publish with us

Policies and ethics