Skip to main content

Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

Abstract

One of the most prominent problems in machine learning in the age of deep learning is the availability of sufficiently large annotated datasets. For specific domains, e.g. animal species, a long-tail distribution means that some classes are observed and annotated insufficiently. Additional labels can be prohibitively expensive, e.g. because domain experts need to be involved. However, there is more information available that is to the best of our knowledge not exploited accordingly.

In this paper, we propose to make use of preexisting class hierarchies like WordNet to integrate additional domain knowledge into classification. We encode the properties of such a class hierarchy into a probabilistic model. From there, we derive a novel label encoding and a corresponding loss function. On the ImageNet and NABirds datasets our method offers a relative improvement of \(10.4\%\) and \(9.6\%\) in accuracy over the baseline respectively. After less than a third of training time, it is already able to match the baseline’s fine-grained recognition performance. Both results show that our suggested method is efficient and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://species.wikimedia.org/wiki/Main_Page.

References

  1. Bart, E., et al.: Unsupervised learning of visual taxonomies. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  2. Barz, B., Denzler, J.: Hierarchy-based image embeddings for semantic image retrieval. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 638–647, January 2019

    Google Scholar 

  3. Benkhalifa, M., Mouradi, A., Bouyakhf, H.: Integrating WordNet knowledge to supplement training data in semi-supervised agglomerative hierarchical clustering for text categorization. Int. J. Intell. Syst. 16(8), 929–947 (2001)

    Article  Google Scholar 

  4. Bilal, A., et al.: Do convolutional neural networks learn class hierarchy? IEEE Trans. Vis. Comput. Graph. 24(1), 152–162 (2018)

    Article  Google Scholar 

  5. Brust, C.-A., Denzler, J.: Not just a matter of semantics: the relationship between visual similarity and semantic similarity. arXiv:1811.07120 [cs], 17 November 2018

  6. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  7. Deng, J., et al.: Large-scale object classification using label relation graphs. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 48–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_4

    Chapter  Google Scholar 

  8. Deng, J., Berg, A.C., Li, K., Fei-Fei, L.: What does classifying more than 10,000 image categories tell us? In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 71–84. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_6

    Chapter  Google Scholar 

  9. Deselaers, T., Ferrari, V.: Visual and semantic similarity in imagenet. In: Computer Vision and Pattern Recognition (CVPR), pp. 1777–1784 (2011)

    Google Scholar 

  10. Faghri, F., et al.: VSE++: improving visual-semantic embeddings with hard negatives. arXiv:1707.05612 [cs], 18 July 2017

  11. Fellbaum, C.: WordNet. Wiley Online Library (1998)

    Google Scholar 

  12. Fergus, R., Bernal, H., Weiss, Y., Torralba, A.: Semantic label sharing for learning with many categories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 762–775. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_55

    Chapter  Google Scholar 

  13. Frome, A., et al.: DeViSE: a deep visual-semantic embedding model. In: Burges, C.J.C., et al. (eds.) Advances in Neural Information Processing Systems 26, pp. 2121–2129. Curran Associates Inc. (2013)

    Google Scholar 

  14. Gaussier, E., Goutte, C., Popat, K., Chen, F.: A hierarchical model for clustering and categorising documents. In: Crestani, F., Girolami, M., van Rijsbergen, C.J. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 229–247. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45886-7_16

    Chapter  Google Scholar 

  15. He, K., et al.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  17. Hoffman, J., et al.: LSDA: large scale detection through adaptation. arXiv preprint arXiv:1407.5035, 18 July 2014

  18. Huo, Y., Ding, M., Zhao, A., Hu, J., Wen, J.-R., Lu, Z.: Zero-shot learning with superclasses. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11303, pp. 460–472. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04182-3_40

    Chapter  Google Scholar 

  19. Hwang, S.J.: Discriminative object categorization with external semantic knowledge. Ph.D. thesis, August 2013

    Google Scholar 

  20. Hwang, S.J., Grauman, K., Sha, F.: Learning a tree of metrics with disjoint visual features. In: Shawe-Taylor, J., et al. (eds.) Advances in Neural Information Processing Systems 24, pp. 621–629. Curran Associates Inc. (2011)

    Google Scholar 

  21. Hwang, S.J., Sigal, L.: A unified semantic embedding: relating taxonomies and attributes. In: Advances in Neural Information Processing Systems 27, p. 9 (2014)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (ICLR), 22 December 2014. arXiv: 1412.6980v9

  23. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. (IJCV) 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  24. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)

    Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  26. Liu, C., et al.: Progressive neural architecture search. arXiv preprint arXiv:1712.00559 (2017)

  27. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2015). arXiv: 1411.4038v2

  28. Marszalek, M., Schmid, C.: Semantic hierarchies for visual object recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–7, June 2007

    Google Scholar 

  29. Partalas, I., et al.: LSHTC: a benchmark for large-scale text classification. arXiv preprint arXiv:1503.08581 (2015)

  30. Rodner, E., Denzler, J.: One-shot learning of object categories using dependent Gaussian processes. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 232–241. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_24

    Chapter  Google Scholar 

  31. Rohrbach, M., Ebert, S., Schiele, B.: Transfer learning in a transductive setting. In: Burges, C.J.C., et al. (eds.) Advances in Neural Information Processing Systems 26, pp. 46–54. Curran Associates Inc. (2013)

    Google Scholar 

  32. Settles, B.: Active learning literature survey. Technical report 1648, University of Wisconsin-Madison (2009)

    Google Scholar 

  33. Sharif Razavian, A., et al.: CNN features off-the-shelf: an astounding baseline for recognition. In: Computer Vision and Pattern Recognition Workshops (CVPR-WS) (2014)

    Google Scholar 

  34. Srivastava, N., Salakhutdinov, R.R.: Discriminative transfer learning with tree-based priors. In: Burges, C.J.C., et al. (eds.) Advances in Neural Information Processing Systems 26, pp. 2094–2102. Curran Associates Inc. (2013)

    Google Scholar 

  35. Sun, C., et al.: Revisiting unreasonable effectiveness of data in deep learning era. In: International Conference on Computer Vision (ICCV), pp. 843–852 (2017)

    Google Scholar 

  36. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. Trans. Pattern Anal. Mach. Intell. (PAMI) 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  37. Van Horn, G., et al.: Building a bird recognition app and large scale dataset with citizen scientists: the fine print in fine-grained dataset collection. In: Computer Vision and Pattern Recognition (CVPR), pp. 595–604 (2015)

    Google Scholar 

  38. Van Horn, G., et al.: The iNaturalist challenge 2017 dataset. arXiv preprint arXiv:1707.06642 (2017)

  39. Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. 22(5–6), 544–557 (2009)

    Article  Google Scholar 

  40. Verma, N., et al.: Learning hierarchical similarity metrics. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2280–2287, June 2012

    Google Scholar 

  41. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  42. Wu, Q., et al.: Image captioning and visual question answering based on attributes and external knowledge. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1367–1381 (2018)

    Article  MathSciNet  Google Scholar 

  43. Yan, Z., et al.: HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, pp. 2740–2748. IEEE, December 2015

    Google Scholar 

  44. Zhang, X., et al.: Embedding label structures for fine-grained feature representation, pp. 1114–1123 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens-Alexander Brust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brust, CA., Denzler, J. (2020). Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics