Skip to main content

Multi-task Learning for Fine-Grained Eye Disease Prediction

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

Abstract

Recently, deep learning techniques have been widely used for medical image analysis. While there exists some work on deep learning for ophthalmology, there is little work on multi-disease predictions from retinal fundus images. Also, most of the work is based on small datasets. In this work, given a fundus image, we focus on three tasks related to eye disease prediction: (1) predicting one of the four broad disease categories – diabetic retinopathy, age-related macular degeneration, glaucoma, and melanoma, (2) predicting one of the 320 fine disease sub-categories, (3) generating a textual diagnosis. We model these three tasks under a multi-task learning setup using ResNet, a popular deep convolutional neural network architecture. Our experiments on a large dataset of 40658 images across 3502 patients provides \(\sim \)86% accuracy for task 1, \(\sim \)67% top-5 accuracy for task 2, and \(\sim \)32 BLEU for the diagnosis captioning task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://doi.org/10.1016/j.pop.2015.05.008, https://www.ncbi.nlm.nih.gov/pubmed/20711029.

  2. 2.

    http://dx.doi.org/10.1016/S2214-109X(17)30393-5.

  3. 3.

    https://doi.org/10.1016/S0140-6736(16)31678-6.

  4. 4.

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5306463/.

  5. 5.

    https://github.com/SahilC/multitask-eye-disease-recognition.

References

  1. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)

    Article  Google Scholar 

  2. Bowd, C., et al.: Glaucomatous patterns in frequency doubling technology (FDT) perimetry data identified by unsupervised machine learning classifiers. PLoS ONE 9(1), e85941 (2014)

    Article  Google Scholar 

  3. Caruana, R.: Multitask learning: a knowledge-based source of inductive bias. In: ICML, pp. 41–48 (1993)

    Google Scholar 

  4. Cheng, P.M., Malhi, H.S.: Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J. Digit. Imaging 30(2), 234–243 (2017)

    Article  Google Scholar 

  5. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: ICML, pp. 160–167 (2008)

    Google Scholar 

  6. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24

    Chapter  Google Scholar 

  7. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: ICASSP, pp. 8599–8603 (2013)

    Google Scholar 

  8. Duong, L., Cohn, T., Bird, S., Cook, P.: Low resource dependency parsing: cross-lingual parameter sharing in a neural network parser. In: IJCNLP, pp. 845–850 (2015)

    Google Scholar 

  9. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)

    Article  Google Scholar 

  10. Fraccaro, P., et al.: Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach. BMC Ophthalmol. 15(1) (2015). Article number: 10

    Google Scholar 

  11. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. Biomed. Eng. 59(9), 2538–2548 (2012)

    Google Scholar 

  12. Fu, H., et al.: Disc-aware ensemble network for glaucoma screening from fundus image. TMI 37(11), 2493–2501 (2018)

    Google Scholar 

  13. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  14. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. TMI 35(5), 1153–1159 (2016)

    Google Scholar 

  15. Gulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  16. Gupta, M., Gupta, P., Vaddavalli, P.K., Fatima, A.: Predicting post-operative visual acuity for LASIK surgeries. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 489–501. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31753-3_39

    Chapter  Google Scholar 

  17. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  18. Harbour, J.W.: Molecular prediction of time to metastasis from ocular melanoma fine needle aspirates. Clin. Cancer Res. 12(19 Supplement), A77 (2006)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. Hirasawa, H., Murata, H., Mayama, C., Araie, M., Asaoka, R.: Evaluation of various machine learning methods to predict vision-related quality of life from visual field data and visual acuity in patients with glaucoma. Br. J. Ophthalmol. 98(9), 1230–1235 (2014)

    Article  Google Scholar 

  21. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7, 29 (2016)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  23. Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2), 574–582 (2017)

    Article  Google Scholar 

  24. Lalonde, M., Gagnon, L., Boucher, M.-C., et al.: Automatic visual quality assessment in optical fundus images. In: Vision Interface, vol. 32, pp. 259–264 (2001)

    Google Scholar 

  25. Lee, C.S., Baughman, D.M., Lee, A.Y.: Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retin. 1(4), 322–327 (2017)

    Article  Google Scholar 

  26. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  27. Liu, F., Zhou, Z., Jang, H., Samsonov, A., Zhao, G., Kijowski, R.: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn. Reson. Med. 79(4), 2379–2391 (2018)

    Article  Google Scholar 

  28. Long, M., Wang, J.: Learning multiple tasks with deep relationship networks. arXiv, 2 (2015)

    Google Scholar 

  29. Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., Feris, R.: Fully-adaptive feature sharing in multi-task networks with applications in person attribute classification. In: CVPR, pp. 5334–5343 (2017)

    Google Scholar 

  30. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: CVPR, pp. 3994–4003 (2016)

    Google Scholar 

  31. Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 212–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_25

    Chapter  Google Scholar 

  32. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318 (2002)

    Google Scholar 

  33. Rao, H.L., et al.: Accuracy of ordinary least squares and empirical bayes estimates of short term visual field progression rates to predict long term outcomes in glaucoma. Investig. Ophthalmol. Vis. Sci. 53(14), 182 (2012)

    Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Sample, P.A., et al.: Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields. Investig. Ophthalmol. Vis. Sci. 43(8), 2660–2665 (2002)

    Google Scholar 

  36. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv (2014)

    Google Scholar 

  38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  39. Torquetti, L., Ferrara, G., Ferrara, P.: Predictors of clinical outcomes after intrastromal corneal ring segments implantation. Int. J. Keratoconus Ectatic Corneal Dis. 1, 26–30 (2012)

    Article  Google Scholar 

  40. Jun, X., et al.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. TMI 35(1), 119–130 (2015)

    Google Scholar 

  41. Xu, Y., et al.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: ICASSP, pp. 1626–1630 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sahil Chelaramani or Manish Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chelaramani, S., Gupta, M., Agarwal, V., Gupta, P., Habash, R. (2020). Multi-task Learning for Fine-Grained Eye Disease Prediction. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics