Skip to main content

3D Multi-frequency Fully Correlated Causal Random Field Texture Model

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

  • 1215 Accesses

Abstract

We propose a fast novel multispectral texture model with an analytical solution for both parameter estimation as well as unlimited synthesis. This Gaussian random field type of model combines a principal random field containing measured multispectral pixels with an auxiliary random field resulting from a given function whose argument is the principal field data. The model can serve as a stand-alone texture model or a local model for more complex compound random field or bidirectional texture function models. The model can be beneficial not only for texture synthesis, enlargement, editing, or compression but also for high accuracy texture recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  2. Dana, K.J., Nayar, S.K., van Ginneken, B., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: CVPR, pp. 151–157. IEEE Computer Society (1997)

    Google Scholar 

  3. Haindl, M., Filip, J.: Fast BTF texture modelling. In: Chantler, M. (ed.) Texture 2003. Proceedings, pp. 47–52. IEEE Press, Edinburgh, October 2003

    Google Scholar 

  4. Haindl, M., Filip, J.: A fast probabilistic bidirectional texture function model. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 298–305. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30126-4_37

    Chapter  Google Scholar 

  5. Haindl, M., Filip, J., Arnold, M.: BTF image space utmost compression and modelling method. In: Kittler, J., Petrou, M., Nixon, M. (eds.) Proceedings of the 17th IAPR International Conference on Pattern Recognition, vol. III, pp. 194–197. IEEE Press, Los Alamitos, August 2004. http://dx.doi.org/10.1109/ICPR.2004.1334501

  6. Haindl, M., Havlíček, V.: A multiscale colour texture model. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) Proceedings of the 16th International Conference on Pattern Recognition, pp. 255–258. IEEE Computer Society, Los Alamitos, August 2002. http://dx.doi.org/10.1109/ICPR.2002.1044676

  7. Haindl, M., Havlíček, V.: A compound MRF texture model. In: Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, pp. 1792–1795. IEEE Computer Society CPS, Los Alamitos, August 2010. https://doi.org/10.1109/ICPR.2010.442. http://doi.ieeecomputersociety.org/10.1109/ICPR.2010.442

  8. Haindl, M., Kudělka, M.: Texture fidelity benchmark. In: 2014 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), pp. 1–5. IEEE Computer Society CPS, Los Alamitos, November 2014. https://doi.org/10.1109/IWCIM.2014.7008812. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7008812&isnumber=7008791

  9. Haindl, M., Mikeš, S.: Texture segmentation benchmark. In: Lovell, B., Laurendeau, D., Duin, R. (eds.) Proceedings of the 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE Computer Society, Los Alamitos, December 2008. https://doi.org/10.1109/ICPR.2008.4761118. http://doi.ieeecomputersociety.org/10.1109/ICPR.2008.4761118

  10. Haindl, M.: Visual data recognition and modeling based on local markovian models. In: Florack, L., Duits, R., Jongbloed, G., Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol. 41, pp. 241–259. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2353-8_14

    Chapter  MATH  Google Scholar 

  11. Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1859–1865 (2007). https://doi.org/10.1109/TPAMI.2007.1139. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1139

    Article  Google Scholar 

  12. Haindl, M., Filip, J.: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4902-6

    Book  Google Scholar 

  13. Haindl, M., Havlíček, M.: Bidirectional texture function simultaneous autoregressive model. In: Salerno, E., Çetin, A.E., Salvetti, O. (eds.) MUSCLE 2011. LNCS, vol. 7252, pp. 149–159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32436-9_13. http://www.springerlink.com/content/hj32551334g61647/

    Chapter  Google Scholar 

  14. Haindl, M., Havlíček, V.: A plausible texture enlargement and editing compound markovian model. In: Salerno, E., Çetin, A.E., Salvetti, O. (eds.) MUSCLE 2011. LNCS, vol. 7252, pp. 138–148. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32436-9_12. http://www.springerlink.com/content/047124j43073m202/

    Chapter  Google Scholar 

  15. Haindl, M., Havlíček, V.: BTF compound texture model with non-parametric control field. In: The 24th International Conference on Pattern Recognition (ICPR 2018), pp. 1151–1156. IEEE, August 2018. http://www.icpr2018.org/

  16. Haindl, M., Mikeš, S.: A competition in unsupervised color image segmentation. Pattern Recogn. 57(9), 136–151 (2016). https://doi.org/10.1016/j.patcog.2016.03.003. http://www.sciencedirect.com/science/article/pii/S0031320316000984

    Article  Google Scholar 

  17. Havlíček, M., Haindl, M.: Texture spectral similarity criteria. IET Image Process. 13(6), 1998–2007 (2019). https://doi.org/10.1049/iet-ipr.2019.0250

    Article  Google Scholar 

  18. Jeng, F.C., Woods, J.W.: Compound Gauss-Markov random fields for image estimation. IEEE Trans. Signal Process. 39(3), 683–697 (1991)

    Article  Google Scholar 

  19. Kudělka, M., Haindl, M.: Texture fidelity criterion. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2062–2066. IEEE, September 2016. https://doi.org/10.1109/ICIP.2016.7532721. http://2016.ieeeicip.org/

  20. Pickard, R., Graszyk, C., Mann, S., Wachman, J., Pickard, L., Campbell, L.: Vistex database. Technical report, MIT Media Laboratory, Cambridge (1995)

    Google Scholar 

  21. Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  23. Wang, Z., Bovik, A.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  24. Wang, Z., Simoncelli, E.P.: Translation insensitive image similarity in complex wavelet domain. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2005, pp. 573–576 (2005)

    Google Scholar 

  25. Zujovic, J., Pappas, T., Neuhoff, D.: Structural texture similarity metrics for image analysis and retrieval. IEEE Trans. Image Process. 22(7), 2545–2558 (2013). https://doi.org/10.1109/TIP.2013.2251645

    Article  Google Scholar 

Download references

Acknowledgments

The Czech Science Foundation project GAČR 19-12340S supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Haindl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haindl, M., Havlíček, V. (2020). 3D Multi-frequency Fully Correlated Causal Random Field Texture Model. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics