Skip to main content

A Heilbronn Type Inequality for Plane Nonagons

  • Conference paper
  • First Online:
  • 771 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1125))

Abstract

In this paper, we present a proof of the property that for any convex nonagon \(P_1P_2\ldots P_9\) in the plane, the smallest area of a triangle \(P_{i}P_{j}P_{k} (1\le i< j < k \le 9)\) is at most a fraction of \(4\cdot \sin ^2(\pi /9)/9= 0.05199\ldots \) of the area of the nonagon. The problems is transformed into an optimization problem with bilinear constraints and solved by symbolic computation with Maple.

Supported by the National Natural Science Foundation of China (No. 11471209).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Behrend, F.: Über die kleinste umbeschriebene und die größte einbeschriebene Ellipse eines konvexen. Bereichs. Math. Ann. 115(1), 379–411 (1938)

    Article  Google Scholar 

  2. Buitrago, A., Huylebrouck, D.: Nonagons in the Hagia Sophia and the Selimiye Mosque. Nexus Netw. J. 17(1), 157–181 (2015)

    Article  Google Scholar 

  3. Cantrell, D.: The Heilbronn problem for triangles. http://www2.stetson.edu/~efriedma/heiltri/. Accessed 7 Sept 2019

  4. Chen, L., Zeng, Z., Zhou, W.: An upper bound of Heilbronn number for eight points in triangles. J. Comb. Optim. 28(4), 854–874 (2014)

    Article  MathSciNet  Google Scholar 

  5. Chen, L., Xu, Y., Zeng, Z.: Searching approximate global optimal Heilbronn configurations of nine points in the unit square via GPGPU computing. J. Global Optim. 68(1), 147–167 (2017)

    Article  MathSciNet  Google Scholar 

  6. Comellas, F., Yebra, J.L.A.: New lower bounds for Heilbronn numbers. Electron. J. Comb. 9, #R6 (2002)

    Article  MathSciNet  Google Scholar 

  7. Dress, A., Yang, L., Zeng Z.: Heilbronn problem for six points in a planar convex body. In: Combinatorics and Graph Theory 1995, vol. 1 (Hefei), pp. 97–118. World Scientific Publishing, River Edge (1995)

    Google Scholar 

  8. Friedman, E.: The Heilbronn Problem. http://www.stetson.edu/efriedma/heilbronn. Accessed 14 Mar 2019

  9. Goldberg, M.: Maximizing the smallest triangle made by \(n\) points in a square. Math. Mag. 45, 135–144 (1972)

    Article  MathSciNet  Google Scholar 

  10. Komlós, J., Pintz, J., Szemerédi, E.: On Heilbronn’s triangle problem. J. London Math. Soc. 24(3), 385–396 (1981)

    Article  MathSciNet  Google Scholar 

  11. Komlós, J., Pintz, J., Szemerédi, E.: A lower bound for Heilbronn’s problem. J. London Math. Soc. 25(1), 13–24 (1982)

    Article  MathSciNet  Google Scholar 

  12. Weisstein, E.W.: Heilbronn Triangle Problem. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/HeilbronnTriangleProblem.html. Accessed 14 Mar 2019

  13. Yang, L., Zeng, Z.: Heilbronn problem for seven points in a planar convex body. In: Du, D.-Z., Pardalos, P.M. (eds.) Minimax and Applications. Nonconvex Optimization and Its Applications, vol. 4, pp. 191–218. Springer, Boston (1995). https://doi.org/10.1007/978-1-4613-3557-3_14

    Chapter  Google Scholar 

  14. Yang, L., Zhang, J., Zeng, Z.: Heilbronn problem for five points. Intl Centre Theoret. Physics preprint IC/91/252 (1991)

    Google Scholar 

  15. Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several Heilbronn numbers and a computation. Chinese Ann. Math. Ser. A 13(2), 503–515 (1992). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  16. Yang, L., Zhang, J., Zeng, Z.: On the Heilbronn numbers of triangular regions. Acta Math. Sinica 37(5), 678–689 (1994). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  17. Zeng, Z., Chen, L.: On the Heilbronn optimal configuration of seven points in the square. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI), vol. 6301, pp. 196–224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21046-4_11

    Chapter  Google Scholar 

  18. Zeng, Z., Chen, L.: Determining the Heilbronn configuration of seven points in triangles via symbolic computation. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 458–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_30

    Chapter  Google Scholar 

  19. Zeng, Z., Shan, M.: Semi-mechanization method for an unsolved optimization problem in combinatorial geometry. In: SAC 2007, pp. 762–766 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lu , Lydia Dehbi or Jianlin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, Z., Lu, J., Dehbi, L., Chen, L., Wang, J. (2020). A Heilbronn Type Inequality for Plane Nonagons. In: Gerhard, J., Kotsireas, I. (eds) Maple in Mathematics Education and Research. MC 2019. Communications in Computer and Information Science, vol 1125. Springer, Cham. https://doi.org/10.1007/978-3-030-41258-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41258-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41257-9

  • Online ISBN: 978-3-030-41258-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics