Skip to main content

Mesh-Hardened Finite Element Analysis Through a Generalized Moving Least-Squares Approximation of Variational Problems

  • Conference paper
  • First Online:
  • 1064 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11958))

Abstract

In most finite element methods the mesh is used to both represent the domain and to define the finite element basis. As a result the quality of such methods is tied to the quality of the mesh and may suffer when the latter deteriorates. This paper formulates an alternative approach, which separates the discretization of the domain, i.e., the meshing, from the discretization of the PDE. The latter is accomplished by extending the Generalized Moving Least-Squares (GMLS) regression technique to approximation of bilinear forms and using the mesh only for the integration of the GMLS polynomial basis. Our approach yields a non-conforming discretization of the weak equations that can be handled by standard discontinuous Galerkin or interior penalty terms.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We recall that \(\varPhi \)-unisolvency implies \(\{\phi \in \varPhi \,|\, \lambda _i(\phi ) = 0, i=1,\ldots ,n\} = \{0\}\).

References

  1. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  Google Scholar 

  3. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)

    Article  MathSciNet  Google Scholar 

  4. Babuška, I., Aziz, A.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13(2), 214–226 (1976)

    Article  MathSciNet  Google Scholar 

  5. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  Google Scholar 

  6. Chen, J.S., Hillman, M., Rüter, M.: An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int. J. Numer. Methods Eng. 95(5), 387–418 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50(2), 435–466 (2001)

    Article  Google Scholar 

  8. Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46(3), 1250–1265 (2008)

    Article  MathSciNet  Google Scholar 

  9. Harwick, M., Clay, R., Boggs, P., Walsh, E., Larzelere, A., Altshuler, A.: Dart system analysis. Technical report SAND2005-4647, Sandia National Laboratories (2005)

    Google Scholar 

  10. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32(3), 983–1000 (2012)

    Article  MathSciNet  Google Scholar 

  11. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)

    Article  MathSciNet  Google Scholar 

  12. Puso, M.A., Chen, J.S., Zywicz, E., Elmer, W.: Meshfree and finite element nodal integration methods. Int. J. Numer. Methods Eng. 74(3), 416–446 (2008)

    Article  MathSciNet  Google Scholar 

  13. Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126 (2002)

    Google Scholar 

  14. Trask, N., Perego, M., Bochev, P.: A high-order staggered meshless method for elliptic problems. SIAM J. Sci. Comput. 39(2), A479–A502 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  16. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC-0000230927, and the Laboratory Directed Research and Development program at Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bochev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bochev, P., Trask, N., Kuberry, P., Perego, M. (2020). Mesh-Hardened Finite Element Analysis Through a Generalized Moving Least-Squares Approximation of Variational Problems. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics