Skip to main content

A Second Order Time Accurate Finite Volume Scheme for the Time-Fractional Diffusion Wave Equation on General Nonconforming Meshes

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11958))

Included in the following conference series:

Abstract

SUSHI (Scheme Using Stabilization and Hybrid Interfaces) is a finite volume method has been developed at the first time to approximate heterogeneous and anisotropic diffusion problems. It has been applied later to approximate several types of partial differential equations. The main feature of SUSHI is that the control volumes can only be assumed to be polyhedral. Further, a consistent and stable Discrete Gradient is developed.

In this note, we establish a second order time accurate implicit scheme for the TFDWE (Time Fractional Diffusion-Wave Equation). The space discretization is based on the use of SUSHI whereas the time discretization is performed using a uniform mesh. The scheme is based on the use of an equivalent system of two low order equations. We sketch the proof of the convergence of the stated scheme. The convergence is unconditional. This work is an improvement of [3] in which a first order scheme, whose convergence is conditional, is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alikhanov, A.A.: A new difference scheme for the fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bradji, A.: Convergence order of gradient schemes for time-fractional partial differential equations. C. R. Math. Acad. Sci. Paris 356(4), 439–448 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bradji, A.: Some convergence results of a multi-dimensional finite volume scheme for a time-fractional diffusion-wave equation. In: Cancès, C., Omnes, P. (eds.) FVCA 2017. Springer Proceedings in Mathematics & Statistics, vol. 199, pp. 391–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57397-7_32

    Chapter  MATH  Google Scholar 

  4. Bradji, A.: An analysis of a second-order time accurate scheme for a finite volume method for parabolic equations on general nonconforming multidimensional spatial meshes. Appl. Math. Comput. 219(11), 6354–6371 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    Article  MathSciNet  Google Scholar 

  6. Gao, G.-H., Sun, Z.-Z., Zhang, H.-W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  7. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  8. Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Bradji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benkhaldoun, F., Bradji, A. (2020). A Second Order Time Accurate Finite Volume Scheme for the Time-Fractional Diffusion Wave Equation on General Nonconforming Meshes. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics