Skip to main content

Immunotherapy in Gastrointestinal Malignancies

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1244))

Abstract

Gastrointestinal (GI) cancers represent a variety of malignancies, each with a unique interplay between the tumor and local immune microenvironment. The successes that immunotherapy, particularly immune checkpoint inhibition, has brought to various other solid tumors have largely not yielded the same benefits to patients with GI cancers. There are subsets of patients for whom immunotherapy has been FDA approved in recent years. For example, anti-PD-1 therapy is approved for patients with pretreated hepatocellular carcinoma. Additionally, patients with PD-L1-positive gastric cancer are eligible to receive anti-PD-1 therapy in the third line setting. Outside of the rare subset of patients who harbor MSI-H/dMMR tumors, the vast majority of patients with colorectal, anal, biliary tract, and pancreatic cancers have not responded to single-agent immune checkpoint inhibitors. Innovative techniques with thoughtful treatment combinations, adoptive cell therapy, CAR-T cells, as well as novel predictive biomarkers are needed to bring the benefits of immunotherapy to the majority of patients with GI malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  2. Network NCC. Gastric cancer (version 1.2019). Available from: https://www.nccn.org/professionals/physician_gls/pdf/gastric_blocks.pdf.

  3. Network NCC. Colon cancer (version 1.2019). Available from: https://www.nccn.org/professionals/physician_gls/pdf/colon_blocks.pdf.

  4. Network NCC. Hepatobiliary cancers (version 2.2019). Available from: https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary_blocks.pdf.

  5. Network NCC. Pancreatic adenocarcinoma (version 2.2019). Available from: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic_blocks.pdf.

  6. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16(11):2598–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. US Food and Drug Administration. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication [press release]. 2017. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication.

  10. Sun J, Xu K, Wu C, Wang Y, Hu Y, Zhu Y, et al. PD-L1 expression analysis in gastric carcinoma tissue and blocking of tumor-associated PD-L1 signaling by two functional monoclonal antibodies. Tissue Antigens. 2007;69(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  11. Qing Y, Li Q, Ren T, Xia W, Peng Y, Liu GL, et al. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des Devel Ther. 2015;9:901–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17(6):717–26.

    Article  CAS  PubMed  Google Scholar 

  13. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4(5):e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandala M, Ryu MH, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392(10142):123–33.

    Article  CAS  PubMed  Google Scholar 

  15. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461–71.

    Article  CAS  PubMed  Google Scholar 

  16. Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, et al. CheckMate-032 study: efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol. 2018;36(28):2836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung HC, Arkenau HT, Lee J, Rha SY, Oh DY, Wyrwicz L, et al. Avelumab (anti-PD-L1) as first-line switch-maintenance or second-line therapy in patients with advanced gastric or gastroesophageal junction cancer: phase 1b results from the JAVELIN Solid Tumor trial. J Immunother Cancer. 2019;7(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moehler M, Ryu MH, Dvorkin M, Lee KW, Coskun HS, Wong R, et al. Maintenance avelumab versus continuation of first-line chemotherapy in gastric cancer: JAVELIN Gastric 100 study design. Future Oncol. 2019;15(6):567–77.

    Article  CAS  PubMed  Google Scholar 

  19. Bang YJ, Ruiz EY, Van Cutsem E, Lee KW, Wyrwicz L, Schenker M, et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. 2018;29(10):2052–60.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakamura Y, Komatsu Y, Kato K, Shinozaki E, Bando H, Kato T, et al. bTMB-High Basket trial: a multicenter phase II trial of nivolumab monotherapy in patients with advanced gastrointestinal cancers with high blood tumor mutational burden (bTMB). J Clin Oncol. 2019;37(4_suppl):TPS179-TPS.

    Article  Google Scholar 

  21. Janjigian YY, Chou JF, Simmons M, Momtaz P, Sanchez-Vega F, Shcherba M, et al. First-line pembrolizumab (P), trastuzumab (T), capecitabine (C) and oxaliplatin (O) in HER2-positive metastatic esophagogastric adenocarcinoma (mEGA). J Clin Oncol. 2019;37(4_suppl):62.

    Article  Google Scholar 

  22. Janjigian YY, Bang Y-J, Fuchs CS, Qin S, Satoh T, Shitara K, et al. KEYNOTE-811 pembrolizumab plus trastuzumab and chemotherapy for HER2+ metastatic gastric or gastroesophageal junction cancer (mG/GEJC): A double-blind, randomized, placebo-controlled phase 3 study. J Clin Oncol. 2019;37(15_suppl):TPS4146-TPS.

    Google Scholar 

  23. Takahari D, Wakatsuki T, Ishizuka N, Fukuda N, Shoji H, Hara H, et al. A phase Ib study of nivolumab plus trastuzumab with S-1/capecitabine plus oxaliplatin for HER2 positive advanced gastric cancer (Ni-HIGH study). J Clin Oncol. 2019;37(4_suppl):TPS177-TPS.

    Article  Google Scholar 

  24. Kojima T, Muro K, Francois E, Hsu C-H, Moriwaki T, Kim S-B, et al. Pembrolizumab versus chemotherapy as second-line therapy for advanced esophageal cancer: phase III KEYNOTE-181 study. J Clin Oncol. 2019;37(4_suppl):2.

    Article  Google Scholar 

  25. Uboha NV, Maloney JD, McCarthy D, Deming DA, LoConte NK, Matkowskyj K, et al. Phase I/II trial of perioperative avelumab in combination with chemoradiation in the treatment of stage II/III resectable esophageal cancer. J Clin Oncol. 2019;37(4_suppl):TPS181-TPS.

    Article  Google Scholar 

  26. Peltomäki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 2003;21(6):1174–9.

    Article  PubMed  CAS  Google Scholar 

  27. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18.

    Article  CAS  PubMed  Google Scholar 

  28. Battaglin F, Naseem M, Lenz HJ, Salem ME. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. Clin Adv Hematol Oncol. 2018;16(11):735–45.

    PubMed  PubMed Central  Google Scholar 

  29. Lee V, Murphy A, Le DT, Diaz LA Jr. Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist. 2016;21(10):1200–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015;5(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  31. Alexander J, Watanabe T, Wu TT, Rashid A, Li S, Hamilton SR. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158(2):527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le DT, Kavan P, Kim TW, Burge ME, Cutsem EV, Hara H, et al. KEYNOTE-164: pembrolizumab for patients with advanced microsatellite instability high (MSI-H) colorectal cancer. J Clin Oncol. 2018;36(15_suppl):3514.

    Article  Google Scholar 

  34. Diaz L, Marabelle A, Kim TW, Geva R, Van Cutsem E, André T, et al. 386PEfficacy of pembrolizumab in phase 2 KEYNOTE-164 and KEYNOTE-158 studies of microsatellite instability high cancers. Ann Oncol. 2017;28(suppl_5):v122–v141.

    Google Scholar 

  35. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–9.

    Article  CAS  PubMed  Google Scholar 

  37. US Food and Drug Administration. FDA grants nivolumab accelerated approval for MSI-H or dMMR colorectal cancer [press release]. 2017. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approval-msi-h-or-dmmr-colorectal-cancer.

  38. US Food and Drug Administration. FDA grants accelerated approval to ipilimumab for MSI-H or dMMR metastatic colorectal cancer [press release]. 2018. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-ipilimumab-msi-h-or-dmmr-metastatic-colorectalcancer.

  39. Chen EX, Jonker DJ, Kennecke HF, Berry SR, Couture F, Ahmad CE, et al. CCTG CO.26 trial: a phase II randomized study of durvalumab (D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with advanced refractory colorectal carcinoma (rCRC). J Clin Oncol. 2019;37(4_suppl):481.

    Article  Google Scholar 

  40. Diaz LA, Le DT, Yoshino T, André T, Bendell JC, Rosales M, et al. KEYNOTE-177: Phase 3, open-label, randomized study of first-line pembrolizumab (Pembro) versus investigator-choice chemotherapy for mismatch repair-deficient (dMMR) or microsatellite instability-high (MSI-H) metastatic colorectal carcinoma (mCRC). J Clin Oncol. 2018;36(4_suppl):TPS877-TPS.

    Google Scholar 

  41. Lee JJ, Yothers G, Jacobs SA, Sanoff HK, Cohen DJ, Guthrie KA, et al. Colorectal Cancer Metastatic dMMR Immuno-Therapy (COMMIT) study (NRGGI004/SWOG-S1610): A randomized phase III study of mFOLFOX6/bevacizumab combination chemotherapy with or without atezolizumab or atezolizumab monotherapy in the first-line treatment of patients with deficient DNA mismatch repair (dMMR) metastatic colorectal cancer. J Clin Oncol. 2018;36(15_suppl):TPS3615-TPS.

    Google Scholar 

  42. Lenz H-JJ, Van Cutsem E, Limon ML, Wong KY, Hendlisz A, Aglietta M, et al. LBA18_PRDurable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann Oncol. 2018;29(suppl_8):viii714.

    Google Scholar 

  43. National Cancer I. Combination chemotherapy with or without atezolizumab in treating patients with stage III colon cancer and deficient DNA mismatch repair. 2020.

    Google Scholar 

  44. Royal Marsden NHSFT, University of S, University of O, Merck KgaA DG. Avelumab plus 5-FU based chemotherapy as adjuvant treatment for stage 3 MSI-high or POLE mutant colon cancer. 2024.

    Google Scholar 

  45. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT03507699. Combined immunotherapy andradiosurgery for metastatic colorectal cancer. April 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT03507699.

  46. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT03802747. Immunotherapy combined with Y-90and SBRT for colorectal liver metastases. January 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT03802747.

  47. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT03104439. Nivolumab and ipilimumab andradiation therapy in MSS and MSI high colorectal and pancreatic cancer. April 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT03104439.

  48. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28(6):690–714.

    Article  CAS  PubMed  Google Scholar 

  49. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29(4):482–91.

    Article  CAS  PubMed  Google Scholar 

  50. Bendell JC, Kim TW, Goh BC, Wallin J, Oh D-Y, Han S-W, et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC). J Clin Oncol. 2016;34(15_suppl):3502.

    Article  Google Scholar 

  51. Bendell JC, Powderly JD, Lieu CH, Eckhardt SG, Hurwitz H, Hochster HS, et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol. 2015;33(3_suppl):704.

    Article  Google Scholar 

  52. Eng C, Kim TW, Bendell J, Argiles G, Tebbutt NC, Di Bartolomeo M, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019;20:849.

    Article  CAS  PubMed  Google Scholar 

  53. Frisch M, Glimelius B, van den Brule A. Sexually transmitted infection as a cause of anal cancer. N Engl J Med. 1997;337:1350–8.

    Article  CAS  PubMed  Google Scholar 

  54. De Vuyst H, Clifford G, Nascimento M. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer. 2009;124:1626–36.

    Article  PubMed  CAS  Google Scholar 

  55. Hoots B, Palefsky J, Pimenta J, Smith J. Human papillomavirus type distribution in anal cancer and anal intraepithelial lesions. Int J Cancer. 2009;124:2375–83.

    Article  CAS  PubMed  Google Scholar 

  56. Ott PA, Piha-Paul SA, Munster P, Pishvaian MJ, van Brummelen EMJ, Cohen RB, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann Oncol. 2017;28(5):1036–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morris VK, Salem ME, Nimeiri H, Iqbal S, Singh P, Ciombor K, et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(4):446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. National Cancer I. Nivolumab with or without ipilimumab in treating patients with refractory metastatic anal canal cancer. 2020.

    Google Scholar 

  59. Dana-Farber Cancer I, Merck S, Dohme C. Pembrolizumab in refractory metastatic anal Cancer. 2020.

    Google Scholar 

  60. Centre Hospitalier Universitaire de B, Roche Pharma AG, National Cancer Institute F. Combination of UCPVax vaccine and atezolizumab for the treatment of human papillomavirus positive cancers (VolATIL). 2022.

    Google Scholar 

  61. National Cancer I, Canadian Cancer Trials G. Nivolumab after combined modality therapy in treating patients with high risk stage II-IIIB anal cancer. 2019.

    Google Scholar 

  62. Sangro B, Gomez-Martin C, de la Mata M, Inarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  63. US Food and Drug Administration. FDA grants accelerated approval to nivolumab for HCC previously treated with sorafenib [press release]. 2017. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-hcc-previously-treated-sorafenib.

  64. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;1:1–15.

    Google Scholar 

  66. Silva VW, Askan G, Daniel TD, Lowery M, Klimstra DS, Abou-Alfa GK, et al. Biliary carcinomas: pathology and the role of DNA mismatch repair deficiency. Chin Clin Oncol. 2016;5(5):62.

    Article  PubMed  Google Scholar 

  67. Ueno M, Chung HC, Nagrial A, Marabelle A, Kelley RK, Xu L, et al. 625PDPembrolizumab for advanced biliary adenocarcinoma: results from the multicohort, phase II KEYNOTE-158 study. Ann Oncol. 2018;29(suppl_8):viii210.

    Google Scholar 

  68. Okrah K, Tarighat S, Liu B, Koeppen H, Wagle MC, Cheng G, et al. Transcriptomic analysis of hepatocellular carcinoma reveals molecular features of disease progression and tumor immune biology. NPJ Precis Oncol. 2018;2(1):25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT02576509. An investigational immuno-therapystudy of nivolumab compared to sorafenib as a first treatment in patients with advanced hepatocellular carcinoma. October 2015. Available from: https://clinicaltrials.gov/ct2/show/NCT02576509.

  70. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT01658878. An immuno-therapy study to evaluate the effectiveness, safety and tolerability of nivolumab or nivolumab in combination with other agents in patients with advanced liver cancer. August 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT01658878.

  71. Blair AB, Murphy A. Immunotherapy as a treatment for biliary tract cancers: a review of approaches with an eye to the future. Curr Probl Cancer. 2018;42(1):49–58.

    Article  PubMed  Google Scholar 

  72. Kaida M, Morita-Hoshi Y, Soeda A, Wakeda T, Yamaki Y, Kojima Y, et al. Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother. 2011;34(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  73. Yamamoto K, Ueno T, Kawaoka T, Hazama S, Fukui M, Suehiro Y, et al. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res. 2005;25(5):3575–9.

    CAS  PubMed  Google Scholar 

  74. Shimizu K, Kotera Y, Aruga A, Takeshita N, Takasaki K, Yamamoto M. Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2012;19(2):171–8.

    Article  PubMed  Google Scholar 

  75. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT02757391. CD8+ T cell therapy and pembrolizumab in treating patients with metastatic gastrointestinal tumors. May 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT02757391.

  76. Bauer C, Kuhnemuth B, Duewell P, Ormanns S, Gress T, Schnurr M. Prevailing over T cell exhaustion: new developments in the immunotherapy of pancreatic cancer. Cancer Lett. 2016;381(1):259–68.

    Article  CAS  PubMed  Google Scholar 

  77. Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, et al. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg. 2008;206(5):849–54; discussion 54–6.

    Article  PubMed  Google Scholar 

  78. Macherla S, Laks S, Naqash AR, Bulumulle A, Zervos E, Muzaffar M. Emerging role of immune checkpoint blockade in pancreatic cancer. Int J Mol Sci. 2018;19(11):3505.

    Article  PubMed Central  CAS  Google Scholar 

  79. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21(19):4286–93.

    Article  CAS  PubMed  Google Scholar 

  81. Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36(7):382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weiss GJ, Blaydorn L, Beck J, Bornemann-Kolatzki K, Urnovitz H, Schutz E, et al. Phase Ib/II study of gemcitabine, nab-paclitaxel, and pembrolizumab in metastatic pancreatic adenocarcinoma. Investig New Drugs. 2018;36(1):96–102.

    Article  CAS  Google Scholar 

  84. Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. Clin Cancer Res. 2018;24(6):1326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim ST, Klempner SJ, Park SH, Park JO, Park YS, Lim HY, et al. Correlating programmed death ligand 1 (PD-L1) expression, mismatch repair deficiency, and outcomes across tumor types: implications for immunotherapy. Oncotarget. 2017;8(44):77415–23.

    PubMed  PubMed Central  Google Scholar 

  86. Maity A, Mick R, Huang AC, George SM, Farwell MD, Lukens JN, et al. A phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. Br J Cancer. 2018;119(10):1200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sidney Kimmel Comprehensive Cancer Center at Johns H, Merck S, Dohme C. Study with CY, pembrolizumab, GVAX, and SBRT in patients with locally advanced pancreatic cancer. 2020.

    Google Scholar 

  88. Institut B, Roche Pharma AG, National Cancer Institute F, Immune D. Atezolizumab combined with intratumoral G100 AnD immunogenic radiotherapy in patients with advanced solid tumors. 2021.

    Google Scholar 

  89. Massachusetts General H, Bristol-Myers S, Stand Up To C. Losartan and nivolumab in combination with FOLFIRINOX and SBRT in localized pancreatic cancer. 2021.

    Google Scholar 

  90. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. O’Hara MH, O’Reilly EM, Rosemarie M, Varadhachary G, Wainberg ZA, Ko A, Fisher Jr. GA, Rahma O, Lyman JP, Cabanski CR, Carpenter EL, Hollmann T, Gherardini PF, Kitch L, Selinsky C, LaVallee T, Trifan OC, Dugan U, Hubbard-Lucey VM, Vonderheide RH. A phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients [Abstract CT004]. Proceedings of the 110th annual meeting of the American Association for Cancer Research; 2019 Mar 29–Apr 3. Atlanta (GA), Philadelphia (PA): AACR; 2019.

    Google Scholar 

  92. Mukherjee P, Ginardi AR, Madsen CS, Sterner CJ, Adriance MC, Tevethia MJ, et al. Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. J Immunol. 2000;165(6):3451–60.

    Article  CAS  PubMed  Google Scholar 

  93. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29. Identifier NCT01174121. Immunotherapy using tumor infiltrating lymphocytes for patients with metastatic cancer. August 2010. Available from: https://clinicaltrials.gov/ct2/show/NCT01174121.

  94. Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, et al. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 2016;44(6):1444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chmielewski M, Hahn O, Rappl G, Nowak M, Schmidt-Wolf IH, Hombach AA, et al. T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology. 2012;143(4):1095–107.e2.

    Article  CAS  PubMed  Google Scholar 

  96. Stromnes IM, Schmitt TM, Hulbert A, Brockenbrough JS, Nguyen H, Cuevas C, et al. T cells engineered against a native antigen can surmount immunologic and physical barriers to treat pancreatic ductal adenocarcinoma. Cancer Cell. 2015;28(5):638–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mizrahi, J., Pant, S. (2020). Immunotherapy in Gastrointestinal Malignancies. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1244. Springer, Cham. https://doi.org/10.1007/978-3-030-41008-7_5

Download citation

Publish with us

Policies and ethics