Skip to main content

Industrial Experiments

  • Chapter
  • First Online:
Heatmetry

Abstract

According to common view, the processes occurring in the cylinder of an internal combustion engine (ICE) are an example of complex and unsteady heat transfer. Meticulous investigations [1] based on experiment data and numerical simulation do not fully describe these phenomena, do not allow modulating them, and, what is more important in practical terms, to control the engine parameters associated with the processes inside the cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Prof. Yu. S. Chumakov, Dr. E. M. Lebedev, and others participated in the experiments.

  2. 2.

    The experiments were conducted in conjunction with the Lappeenranta University of Technology (Finland). Prof. U. Purhonen and Dr. H. Yussila took part in the work.

  3. 3.

    Students O. V. Klyuchka and I. A. Sivakov from the Saint Petersburg State Institute of Fine Mechanics and Optics took part in the experiments.

  4. 4.

    Employees of the Reactor and Steam Generator Engineering Department of Peter the Great St. Petersburg Polytechnic University, Dr. K. A. Grigoriev and Dr. V. Ye. Skuditsky, and student P. G. Anoshin participated in the experiments.

References

  1. Kavtaradze, R. Z. (2007). Lokal’nyy teploobmen v porshnevykh dvigatelyakh (Local heat transfer in piston engines: Textbook for universities). Moscow: MGTU imeni N.E. Baumana.

    Google Scholar 

  2. Petrichenko, R. M. (1983). Fizicheskiye osnovy vnutritsilindrovykh protsessov v dvigatelyakh vnutrennego sgoraniya (The physical foundations of in-cylinder processes in internal combustion engines: Textbook for universities). Leningrad.

    Google Scholar 

  3. Isii, A., Nagano, K., Adachi, K., et al. (2000). Measurement of instantaneous heat flux flowing into metallic and ceramic combustion chamber walls. SAE Technical Papers, 01–1815, 1–24.

    Google Scholar 

  4. Rozenblit, G. B. (1977). Teploperedacha v dizelyakh (Heat transfer in diesel engines). Moscow: Mashinostroyeniye.

    Google Scholar 

  5. (1981). Toplivoraspredelitel’nyy nasos tipa VE: Tekhnicheskoye opisaniye (VE type fuel injection pump: Technical description). BOSCH GmbH.

    Google Scholar 

  6. Kostin, A. K., Pugachev, B. P., & Kochinev, Y. U. Y. U. (1989). Rabota dizeley v usloviyakh ekspluatatsii (The operation of diesel engines in operating conditions: Reference). Leningrad: Mashinostroyeniye.

    Google Scholar 

  7. Semenov, B. N., Pavlov, Ye. P., & Koptsev, V. P. (1990). Rabochiy protsess vysokooborotnykh dizeley maloy moshchnosti (The workflow of high-speed diesel engines of low power). Leningrad: Mashinostroyeniye.

    Google Scholar 

  8. Vintsarevich, A. V., Sapozhnikov, S. Z., Pavlov, A. V., et al. (2017). Gradient heat flux measurement as monitoring method for the diesel engine. In International Conference on Problems of Thermal Physics and Power Engineering 2017, PTPPE 2017, National Research University Moscow Power Engineering Institute (NRU MPEI) Moscow, Russian Federation, 9–11 October 2017.

    Google Scholar 

  9. Vintsarevich, A. V., Mityacov, A. V., Gerasimov, D., et al. (2018). Gradient heat flux measurement as monitoring tool for the diesel engine. In International Scientific Conference on Energy, Environmental and Construction Engineering, EECE 2018, Congress Center of Peter the Great St. Petersburg Polytechnic University, 19–20 November 2018.

    Google Scholar 

  10. Howey, D. A., Childs, P. R. N., & Holmes, A. S. (2012). Air-gap convection in rotating electrical machines. IEEE Transactions on Industrial Electronics, 59(3), 1367–1375.

    Article  Google Scholar 

  11. Jussila, H. (2009). Concentrated winding multiphase permanent magnetmachine design and electromagnetic properties-Case axial flux machine. Ph.D. dissertation, Acta Universitatis Lappeenrantaensis 374, Lappeenranta Univ. Technol., Lappeenranta, Finland.

    Google Scholar 

  12. Howey, D. A., Holmes, A. S., & Pullen, K. R. (2009). Measurement of stator heat transfer in air-cooled axial flux permanent magnet machines. In Proceedings of the IEEE Annual Conference on 35th Industrial Electronics, Porto, Portugal, 3–5 November 2009 (pp. 1197–1202).

    Google Scholar 

  13. Harmand, S., Watel, B., & Desmet, B. (2000). Local convective heat exchanges from a rotor facing a stator. International Journal of Thermal Sciences, 39(3), 404–413.

    Article  Google Scholar 

  14. Lykov, A. V. (1967). Teoriya teploprovodnostim (Theory of thermal conductivity). Moscow: Vysshaya shkola.

    Google Scholar 

  15. Blokh, A. G., Zhuravlev, Y. A., & Ryzhkov, L. N. (1991). Teploobmen izlucheniyem (Radiation heat transfer: Reference book). Moscow: Energoatomizdat.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Z. Sapozhnikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapozhnikov, S.Z., Mityakov, V.Y., Mityakov, A. (2020). Industrial Experiments. In: Heatmetry. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-40854-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40854-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40853-4

  • Online ISBN: 978-3-030-40854-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics