Skip to main content

Artificial Intelligence in Medical Diagnosis: Methods, Algorithms and Applications

  • Chapter
  • First Online:

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 13))

Abstract

Artificial intelligence (AI) has evolved rapidly since the late 1980s. Increasing of healthcare datasets and its performance, the past two decades have seen an exponential progress in publications on AI. However, with the advent of increased computational power, availability of AI devices was increased. There are two main devices in AI, machine learning, where structured data (i.e. images, EP and genetic data) are analyzed and natural language processing, where unstructured data are analyzed. Both AI devices have been improved in great detail over the past two decades for its methods, algorithms, and applications. However, various attempts and new methods of AI have been used in recent years and few diseases such as cancer, nervous system disease, cardiovascular disease, liver disease, congenital cataract disease, etc. were potentially analyzed using AI. Now a day an advanced method called deep learning has initiated a boom of AI and great modifications of diagnostic medical imaging systems like endoscopic diagnosis, pathology and dermatology will be expected in the near future. Herein, the authors give a basic technical knowledge about popular methods, algorithms and applications in medical diagnosis which emerged in the past years.

J. H. Kamdar and J. Jeba Praba are considered as Joint first.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Afzal, V.P. Mallipeddi, S. Sohn, H. Liu, R. Chaudhry, C.G. Scott, I.J. Kullo, A.M. Arruda-Olson, Natural language processing of clinical notes for identification of critical limb ischemia. Int. J. Med. Inform. 111, 83–89 (2018)

    Article  Google Scholar 

  2. N. Afzal, S. Sohn, S. Abram, C.G. Scott, R. Chaudhry, H. Liu, I.J. Kullo, A.M. Arruda-Olson, Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. J. Vasc. Surg. 65(6), 1753–1761 (2017)

    Article  Google Scholar 

  3. A. Agah, Introduction to medical applications of artificial intelligence, in Medical Applications of Artificial Intelligence (CRC Press, 2013), pp. 19–26

    Google Scholar 

  4. S. Bacchi, T. Zerner, L. Oakden-Rayner, T. Kleinig, S. Patel, J. Jannes, Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: a pilot study. Acad. Radiol. (2019)

    Google Scholar 

  5. V.M. Castro, D. Dligach, S. Finan, S. Yu, A. Can, M. Abd-El-Barr, V. Gainer, N.A. Shadick, S. Murphy, T. Cai, G. Savova, Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology 88(2), 164–168 (2017)

    Article  Google Scholar 

  6. X. Chen, H. Xie, F.L. Wang, Z. Liu, J. Xu, T. Hao, A bibliometric analysis of natural language processing in medical research. BMC Med. Inform. Decis. Mak. 18(1), 14 (2018)

    Article  Google Scholar 

  7. C.L. Chung, K.J. Huang, S.Y. Chen, M.H. Lai, Y.C. Chen, Y.F. Kuo, Detecting Bakanae disease in rice seedlings by machine vision. Comput. Electron. Agric. 121, 404–411 (2016)

    Article  Google Scholar 

  8. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. M. Craninx, V. Fievez, B. Vlaeminck, B. De Baets, Artificial neural network models of the rumen fermentation pattern in dairy cattle. Comput. Electron. Agric. 60, 226–238 (2008)

    Article  Google Scholar 

  10. J. Dheeba, N.A. Singh, S.T. Selvi, Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 49, 45–52 (2014)

    Article  Google Scholar 

  11. V.B. Dongre, L.S. Kokate, V.M. Salunke, S.M. Durge, V.N. Khandait, P.V. Patil, Artificial intelligence for prediction of standard lactation milk yield in Deoni cattle. Int. J. Livestock Res. 7(11), 167–173 (2017)

    Google Scholar 

  12. M. Durairaj, K. Meena, A hybrid prediction system using rough sets and artificial neural networks. Int. J. Innov. Technol. Creative Eng. 1, 16–23 (2011). ISSN: 2045-8711

    Google Scholar 

  13. R. Dutta, D. Smith, R. Rawnsley, G. Bishop-Hurley, J. Hills, G. Timms, D. Henry, Dynamic cattle behavioural classification using supervised ensemble classifiers. Comput. Electron. Agric. 111, 18–28 (2015)

    Article  Google Scholar 

  14. M.A. Ebrahimi, M.H. Khoshtaghaza, S. Minaei, B. Jamshidi, Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 137, 52–58 (2017)

    Article  Google Scholar 

  15. A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, S. Thrun, Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)

    Article  Google Scholar 

  16. D. Farina, I. Vujaklija, M. Sartori, T. Kapelner, F. Negro, N. Jiang, K. Bergmeister, A. Andalib, J. Principe, O.C. Aszmann, Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat. Biomed. Eng. 1(2), 0025 (2017)

    Article  Google Scholar 

  17. K.P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)

    Article  Google Scholar 

  18. M. Fiszman, W.W. Chapman, D. Aronsky, R.S. Evans, P.J. Haug, Automatic detection of acute bacterial pneumonia from chest X-ray reports. J. Am. Med. Inform. Assoc. 7(6), 593–604 (2000)

    Article  Google Scholar 

  19. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  20. J.C. Griffis, J.B. Allendorfer, J.P. Szaflarski, Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J. Neurosci. Methods 257, 97–108 (2016)

    Article  Google Scholar 

  21. V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  22. T.J. Hirschauer, H. Adeli, J.A. Buford, Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J. Med. Syst. 39(11), 179 (2015)

    Article  Google Scholar 

  23. F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, Y. Wang, Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2(4), 230–243 (2017)

    Article  Google Scholar 

  24. J.H. John, Neural network and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  26. K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  27. L. Khedher, J. Ramírez, J.M. Górriz, A. Brahim, F. Segovia, Alzheimer’s Disease Neuroimaging Initiative, Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 151, 139–150 (2015)

    Article  Google Scholar 

  28. C. Kim, V. Zhu, J. Obeid, L. Lenert, Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke. PLoS ONE 14(2), e0212778 (2019)

    Article  Google Scholar 

  29. S. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Long, H. Lin, Z. Liu, X. Wu, L. Wang, J. Jiang, Y. An, Z. Lin, X. Li, J. Chen, J. Li, An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1(2), 0024 (2017)

    Article  Google Scholar 

  31. T.P. Miller, Y. Li, K.D. Getz, J. Dudley, E. Burrows, J. Pennington, A. Ibrahimova, B.T. Fisher, R. Bagatell, A.E. Seif, R. Grundmeier, Using electronic medical record data to report laboratory adverse events. Br. J. Haematol. 177(2), 283–286 (2017)

    Article  Google Scholar 

  32. I.R. Morales, D.R. Cebrián, E. Fernandez-Blanco, A.P. Sierra, Early warning in egg production curves from commercial hens: a SVM approach. Comput. Electron. Agric. 121, 169–179 (2016)

    Article  Google Scholar 

  33. G. Orru, W. Pettersson-Yeo, A.F. Marquand, G. Sartori, A. Mechelli, Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012)

    Article  Google Scholar 

  34. X.E. Pantazi, D. Moshou, R. Oberti, J. West, A.M. Mouazen, D. Bochtis, Detection of biotic and abiotic stresses in crops by using hierarchical self-organizing classifiers. Precis. Agric. 18, 383–393 (2017)

    Article  Google Scholar 

  35. K. Pearson, LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  MATH  Google Scholar 

  36. V. Pegorini, L.Z. Karam, C.S.R. Pitta, R. Cardoso, J.C.C. da Silva, H.J. Kalinowski, R. Ribeiro, F.L. Bertotti, T.S. Assmann, In vivo pattern classification of ingestive behavior in ruminants using FBG sensors and machine learning. Sensors 15, 28456–28471 (2015)

    Article  Google Scholar 

  37. A.N. Ramesh, C. Kambhampati, J.R. Monson, P.J. Drew, Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86(5), 334 (2004)

    Article  Google Scholar 

  38. D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, G.Z. Yang, Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2016)

    Article  Google Scholar 

  39. J.M. Rondina, M. Filippone, M. Girolami, N.S. Ward, Decoding post-stroke motor function from structural brain imaging. NeuroImage Clin. 12, 372–380 (2016)

    Article  Google Scholar 

  40. M.M. Santoni, D.I. Sensuse, A.M. Arymurthy, M.I. Fanany, Cattle race classification using gray level co-occurrence matrix convolutional neural networks. Procedia Comput. Sci. 59, 493–502 (2015)

    Article  Google Scholar 

  41. S.C. Shapiro, Artificial intelligence, in Encyclopedia of Artificial Intelligence, vol. 1, 2nd edn., ed. by S.C. Shapiro (Wiley, New York, 1992)

    Google Scholar 

  42. N.H. Sweilam, A.A. Tharwat, N.A. Moniem, Support vector machine for diagnosis cancer disease: a comparative study. Egypt. Inform. J. 11(2), 81–92 (2010)

    Article  Google Scholar 

  43. R.E. Thornhill, C. Lum, A. Jaberi, P. Stefanski, C.H. Torres, F. Momoli, W. Petrcich, D. Dowlatshahi, Can shape analysis differentiate free-floating internal carotid artery thrombus from atherosclerotic plaque in patients evaluated with CTA for stroke or transient ischemic attack? Acad. Radiol. 21(3), 345–354 (2014)

    Article  Google Scholar 

  44. A. Yardimci, A survey on use of soft computing methods in medicine, in Proceedings of the 17th International Conference on Artificial Neural Networks, Porto, Portugal (2007), pp. 69–79

    Google Scholar 

  45. Q.Y. Zhong, E.W. Karlson, B. Gelaye, S. Finan, P. Avillach, J.W. Smoller, T. Cai, M.A. Williams, Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs. clinical notes processed by natural language processing. BMC Med. Inform. Decis. Making 18(1), 30 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Georrge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamdar, J.H., Jeba Praba, J., Georrge, J.J. (2020). Artificial Intelligence in Medical Diagnosis: Methods, Algorithms and Applications. In: Jain, V., Chatterjee, J. (eds) Machine Learning with Health Care Perspective. Learning and Analytics in Intelligent Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-40850-3_2

Download citation

Publish with us

Policies and ethics