Skip to main content

Abstract

One of the areas where the technological developments in biomedical applications can be used most effectively is the neurological monitoring systems. Wireless data communication systems enable complete implantation of monitoring circuits for intracranial recordings. This chapter explains how bidirectional wireless data communication is established for the implanted neural monitoring system. A downlink communication using low power pulse position modulation is investigated to program the remotely powered implant. Two alternative methods, namely narrowband and ultra-wideband transmitters, are designed to perform transmitting the amplified, quantized, and analyzed neural activities to the external unit. The presented circuits are fabricated, and their characterizations are validated with measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarz DA, Lebedev MA, Hanson TL et al (2014) Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods 11:670–676

    Article  Google Scholar 

  2. Wang G, Liu W, Sivaprakasam M, Kendir GA (2005) Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans Circuits Syst Regul Pap 52:2109–2117

    Article  Google Scholar 

  3. Tang Z, Smith B, Schild JH, Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans Biomed Eng 42:524–528

    Article  Google Scholar 

  4. Bohorquez JL, Chandrakasan AP, Dawson JL (2009) A 350µW CMOS MSK transmitter and 400µW OOK super-regenerative receiver for medical implant communications. IEEE J Solid State Circuits 44:1248–1259

    Article  Google Scholar 

  5. Chae MS, Yang Z, Yuce MR et al (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17:312–321

    Article  Google Scholar 

  6. Ballini M, Müller J, Livi P et al (2014) A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J Solid State Circuits 49:2705–2719

    Article  Google Scholar 

  7. Liu W, Vichienchom K, Clements M et al (2000) A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid State Circuits 35:1487–1497

    Article  Google Scholar 

  8. Lee H, Kim J, Ha D et al (2015) Differentiating ASK demodulator for contactless smart cards supporting VHBR. IEEE Trans Circuits Syst Express Briefs 62:641–645

    Article  Google Scholar 

  9. Ghovanloo M, Najafi K (2004) A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans Circuits Syst Regul Pap 51:2374–2383

    Article  Google Scholar 

  10. Hwang Y, Hwang B, Lin H, Chen J (2013) PLL-based contactless energy transfer analog FSK demodulator using high-efficiency rectifier. IEEE Trans Ind Electron 60:280–290

    Article  Google Scholar 

  11. Lee S, Hsieh C, Yang C (2012) Wireless front-end with power management for an implantable cardiac microstimulator. IEEE Trans Biomed Circuits Syst 6:28–38

    Article  Google Scholar 

  12. Hu Y, Sawan M (2005) A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans Circuits Syst Regul Pap 52:2552–2562

    Article  Google Scholar 

  13. Gong CA, Shiue M, Yao K et al (2008) A truly low-cost high-efficiency ASK demodulator based on self-sampling scheme for bioimplantable applications. IEEE Trans Circuits Syst Regul Pap 55:1464–1477

    Article  MathSciNet  Google Scholar 

  14. Wang C, Chen C, Kuo R, Shmilovitz D (2010) Self-sampled All-MOS ASK demodulator for lower ISM band applications. IEEE Trans Circuits Syst Express Briefs 57:265–269

    Article  Google Scholar 

  15. Kilinc EG, Dehollain C, Maloberti F (2014) A low-power PPM demodulator for remotely powered batteryless implantable devices. In: 2014 IEEE 57th international midwest symposium on circuits and systems (MWSCAS). pp 318–321

    Google Scholar 

  16. RamRakhyani AK, Mirabbasi S, Chiao M (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5:48–63

    Article  Google Scholar 

  17. Muller R, Le H, Li W et al (2015) A minimally invasive 64-channel wireless µECoG implant. IEEE J Solid State Circuits 50:344–359

    Article  Google Scholar 

  18. Tan J, Liew W, Heng C, Lian Y (2014) A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC. IEEE Trans Biomed Circuits Syst 8:497–509

    Article  Google Scholar 

  19. Kassiri H, Bagheri A, Soltani N et al (2016) Battery-less tri-band-radio neuro-monitor and responsive neurostimulator for diagnostics and treatment of neurological disorders. IEEE J Solid State Circuits 51:1274–1289

    Article  Google Scholar 

  20. Kiani M, Ghovanloo M (2013) A 20-Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission. IEEE Trans Circuits Syst Express Briefs 60:382–386

    Article  Google Scholar 

  21. Bourdel S, Bachelet Y, Gaubert J et al (2010) A 9-pJ/pulse 1.42-Vpp OOK CMOS UWB pulse generator for the 3.1–10.6-GHz FCC band. IEEE Trans Microwave Theory Tech 58:65–73

    Article  Google Scholar 

  22. Mirbozorgi SA, Bahrami H, Sawan M et al (2016) A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants. IEEE Trans Biomed Circuits Syst 10:643–653

    Article  Google Scholar 

  23. Mercier PP, Daly DC, Chandrakasan AP (2009) An energy-efficient all-digital UWB transmitter employing dual capacitively-coupled pulse-shaping drivers. IEEE J Solid State Circuits 44:1679–1688

    Article  Google Scholar 

  24. Hajimiri A, Lee TH (1999) Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circuits 34:717–724

    Article  Google Scholar 

  25. Ham D, Hajimiri A (2001) Concepts and methods in optimization of integrated LC VCOs. IEEE J Solid State Circuits 36:896–909

    Article  Google Scholar 

  26. Jung J, Zhu S, Liu P et al (2010) 22-pJ/bit energy-efficient 2.4-GHz implantable OOK transmitter for wireless biotelemetry systems: in vitro experiments using rat skin-mimic. IEEE Trans Microwave Theory Tech 58:4102–4111

    Google Scholar 

  27. Smith G (1971) Radiation efficiency of electrically small multiturn loop antennas used in upper atmosphere propagation experiments. In: 1971 Antennas and Propagation Society International Symposium, pp 113–116

    Google Scholar 

  28. Smith G (1972) Radiation efficiency of electrically small multiturn loop antennas. IEEE Trans Antennas Propag 20:656–657

    Article  Google Scholar 

  29. Federal Communications Commission (2002) First report and order regarding ultra-wideband transmission systems

    Google Scholar 

  30. Lin Y, Park S, Chen X et al (2018) 4.32-pJ/b, overlap-free, feedforward edge-combiner-based ultra-wideband transmitter for high-channel-count neural recording. IEEE Microwave Wireless Compon Lett 28:52–54

    Article  Google Scholar 

  31. Mir-Moghtadaei SV, Fotowat-Ahmady A, Nezhad AZ, Serdijn WA (2014) A 90 nm-CMOS IR-UWB BPSK transmitter with spectrum tunability to improve peaceful UWB-narrowband coexistence. IEEE Trans Circuits Syst Regul Pap 61:1836–1848

    Article  Google Scholar 

  32. Kim N, Rabaey JM (2016) A high data-rate energy-efficient triple-channel UWB-based cognitive radio. IEEE J Solid State Circuits 51:809–820

    Article  Google Scholar 

  33. Bahrami H, Mirbozorgi SA, Ameli R et al (2016) Flexible, polarization-diverse UWB antennas for implantable neural recording systems. IEEE Trans Biomed Circuits Syst 10:38–48

    Article  Google Scholar 

  34. Craninckx J, Steyaert M (1995) Low-noise voltage-controlled oscillators using enhanced LC-tanks. IEEE Trans Circuits Syst II Analog Digit Signal Process 42:794–804

    Article  Google Scholar 

  35. Lu L-H, Hsieh H-H, Liao Y-T (2006) A wide tuning-range CMOS VCO with a differential tunable active inductor. IEEE Trans Microwave Theory Tech 54:3462–3468

    Article  Google Scholar 

  36. Crepaldi M, Angotzi GN, Maviglia A et al (2018) A 5 pJ/pulse at 1-Gpps pulsed transmitter based on asynchronous logic master–slave PLL synthesis. IEEE Trans Circuits Syst Regul Pap 65:1096–1109

    Article  Google Scholar 

  37. Streel G de, Stas F, Gurné T et al (2017) SleepTalker: a ULV 802.15.4a IR-UWB transmitter SoC in 28-nm FDSOI achieving 14 pJ/b at 27 Mb/s with channel selection based on adaptive FBB and digitally programmable pulse shaping. IEEE J Solid State Circuits 52:1163–1177

    Article  Google Scholar 

  38. Gunturi P, Emanetoglu NW, Kotecki DE (2017) A 250-Mb/s data rate IR-UWB transmitter using current-reused technique. IEEE Trans Microwave Theory Tech 65:4255–4265

    Article  Google Scholar 

  39. Ko J, Gharpurey R (2016) A pulsed UWB transceiver in 65 nm CMOS with four-element beamforming for 1 Gbps meter-range WPAN applications. IEEE J Solid State Circuits 51:1177–1187

    Article  Google Scholar 

  40. Ebrazeh A, Mohseni P (2015) 30 pJ/b, 67 Mbps, centimeter-to-meter range data telemetry with an IR-UWB wireless link. IEEE Trans Biomed Circuits Syst 9:362–369

    Article  Google Scholar 

  41. Na K, Jang H, Ma H et al (2015) A 200-Mb/s data rate 3.1–4.8-GHz IR-UWB all-digital pulse generator with DB-BPSK modulation. IEEE Trans Circuits Syst Express Briefs 62:1184–1188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Türe, K., Dehollain, C., Maloberti, F. (2020). Wireless Data Communication. In: Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications . Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-40826-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40826-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40825-1

  • Online ISBN: 978-3-030-40826-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics