Skip to main content

Allelopathic Control of Native Weeds

  • Chapter
  • First Online:
Allelopathy

Abstract

Weeds are undesired plants that are of no economical use and are hard to manage by farmers. Weeds affect the growth and development of crops and therefore limit their productivity (Ani, Onu, Okoro, & Uguru, 2018). In the agricultural system, weeds compete with crop plants resulting in the loss of their yield (Gaba, Reboud, & Fried, 2016). They limit the accessibility of light, moisture, space to crops and deteriorate their quality (Guglielmini, VerdĂș, & Satorre, 2017). In view of these features, it has become necessary to check its growth. However, with the beginning of agriculture, the most prominent weed control approaches include an application of herbicides and hand/motorized weeding (Jabran, Mahajan, Sardana, & Chauhan, 2015; Young, Meyer, & Woldt, 2014). These approaches have a remarkable contribution to the improvement of crop production; but various hurdles are associated with them, as well. However, wide utilization of herbicides to check the growth of weeds has led to severe ecological and environmental problems like herbicide resistance, a shift in weed flora, and environmental pollution and health hazards due to their toxic residues in soil, water, and food chain. The harmful effect of commercial herbicides makes it suitable to explore various other weed management alternatives (Nirmal Kumar, Amb, & Bora, 2010) and allelopathy seems to be one of the options (Rawat, Maikhuri, Bahuguna, Jha, & Phondani, 2017). Allelopathy is an eco-friendly weed management tool, which is practiced to combat the impacts of environmental pollution. Allelopathy is a chemical method that allows the plant to compete for a narrow range of resources (Gioria & Osborne, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcantara, C., Pujadas, A., & Saavedra, M. (2011). Management of Sinapis alba subsp. mairei winter cover crop residues for summer weed control in southern Spain. Crop Protection, 30, 1239–1244.

    Article  Google Scholar 

  • Amosse, C., Jeuffroy, M. H., Celette, F., & David, C. (2013). Relay-intercropped forage legumes help to control weeds in organic grain production. European Journal of Agronomy, 49, 158–167.

    Article  Google Scholar 

  • Ani, O., Onu, O., Okoro, G., & Uguru, M. (2018). Overview of biological methods of weed control. Biological Approaches for Controlling Weeds, 5, 5.

    Google Scholar 

  • Arora, K. O., Batish, D. A., Kohli, R., & Singh, H. (2017). Allelopathic impact of essential oil of Tagetes minuta on common agricultural and wasteland weeds. Innovare Journal of Agricultural Science, 5, 1–4.

    CAS  Google Scholar 

  • Asaduzzaman, M., An, M., Pratley, J. E., Luckett, D. J., & Lemerle, D. (2014). Canola (Brassica napus) germplasm shows variable allelopathic effects against annual ryegrass (Lolium rigidum). Plant and Soil, 380(1–2), 47–56.

    Article  CAS  Google Scholar 

  • Bajgai, Y., Kristiansen, P., Hulugalle, N., & McHenry, M. (2015). Comparison of organic and conventional managements on yields, nutrients and weeds in a corn–cabbage rotation. Renewable Agricultural and Food Systems, 30(2), 132–142.

    Article  Google Scholar 

  • Bernstein, E. R., Stoltenberg, D. E., Posner, J. L., & Hedtcke, J. L. (2014). Weed community dynamics and suppression in tilled and no-tillage transitional organic winter rye–soybean systems. Weed science, 62(1), 125–137.

    Article  CAS  Google Scholar 

  • Bhadoria, P. B. (2011). Allelopathy: A natural way towards weed management. American Journal of Experimental Agriculture, 1(1), 7.

    Article  Google Scholar 

  • Bhowmik, P. C. (2003). Challenges and opportunities in implementing allelopathy for natural weed management. Crop protection, 22(4), 661–671.

    Article  Google Scholar 

  • Dayan, F. E., Owen, D. K., & Duke, S. O. (2012). Rationale for a natural products approach to herbicide discovery. Pest Management Science, 68, 519–528.

    Article  CAS  PubMed  Google Scholar 

  • Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., & Lithourgidis, A. S. (2006). Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Science, 46, 345–352.

    Article  Google Scholar 

  • El-Rokiek Kowthar, G., Ahmed, S. A., Messiha, N. K., Mohamed, S. A., & El-Masry, R. R. (2017). Controlling the grassy weed Avena fatua associating wheat plants with the seed powder of two brassicaceae plants Brassica rapa and Sinapis alba. Middle East Journal, 6(4), 1014–1020.

    Google Scholar 

  • Farooq, M., Jabran, K., Cheema, Z. A., Wahid, A., & Siddique, K. H. M. (2011). The role of allelopathy in agricultural pest management. Pest Management Science, 67, 493–506.

    Article  CAS  PubMed  Google Scholar 

  • FernĂĄndez-Aparicio, M., Emeran, A. A., & Rubiales, D. (2010). Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Protection, 29(8), 867–871.

    Article  Google Scholar 

  • Ferreira, M. I., & Reinhardt, C. F. (2016). Allelopathic weed suppression in agroecosystems: A review of theories and practices. African Journal of Agricultural Research, 11(6), 450–459.

    Article  Google Scholar 

  • Gaba, S., Reboud, X., & Fried, G. (2016). Agroecology and conservation of weed diversity in agricultural lands. Botany Letters, 163(4), 351–354.

    Article  Google Scholar 

  • Gioria, M., & Osborne, B. A. (2014). Resource competition in plant invasions: Emerging patterns and research needs. Frontiers in Plant Science, 5, 501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guglielmini, A. C., VerdĂș, A. M., & Satorre, E. H. (2017). Competitive ability of five common weed species in competition with soybean. International journal of pest management, 63(1), 30–36.

    Article  Google Scholar 

  • Hussain, F., Ilahi, I., Malik, S. A., Dasti, A. A., & Ahmad, B. (2011). Allelopathic effects of rain leachates and root exudates of Cenchrus ciliaris L. and Bothriochloa pertusa (L.) A. Camus. Pakistan Journal of Botany, 43(1), 341–350.

    CAS  Google Scholar 

  • Jabran, K. (2017). Manipulation of allelopathic crops for weed control (1st ed.). Cham, Switzerland: Springer.

    Book  Google Scholar 

  • Jabran, K., & Chauhan, B. S. (2018). Non-chemical weed control (1st ed.). New York, NY: Elsevier.

    Google Scholar 

  • Jabran, K., & Farooq, M. (2013). Implications of potential allelopathic crops in agricultural systems. In Allelopathy (pp. 349–385). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Jabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65.

    Article  Google Scholar 

  • Kapoor, D., Tiwari, A., Sehgal, A., Landi, M., Brestic, M., & Sharma, A. (2019). Exploiting the allelopathic potential of aqueous leaf extracts of Artemisia absinthium and Psidium guajava against Parthenium hysterophorus, a widespread weed in India. Plants, 8(12), 552.

    Article  Google Scholar 

  • Khan, M. A., Ali, K., Hussain, Z., & Afridi, R. A. (2012). Impact of maize-legume intercropping on weeds and maize crop. Pakistan Journal of Weed Science Research, 18(1), 127–136.

    Google Scholar 

  • Khan, M. B., Khan, M., Hussain, M., Farooq, M., Jabran, K., & Lee, D. J. (2012). Bio-economic assessment of different wheat-canola intercropping systems. International Journal of Agriculture and Biology, 14, 769–774.

    Google Scholar 

  • Khanh, T. D., Son, D. B., Phuong, V. T., Hoa, L. T., Linh, L. H., Yen, N. V., & Trung, K. H. (2017). Assessment of weed-suppressing potential among rice (Oryza sativa L.) landraces against the growth of Barnyardgrass (Echinochloa crus-galli P. Beauv) in field condition. Academy of Agriculture Journal, 2(08), 47–51.

    Google Scholar 

  • Mirsky, S. B., Ryan, M. R., Teasdale, J. R., Curran, W. S., Reberg-Horton, C. S., Spargo, J. T., 
 Moyer, J. W. (2013). Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technology, 27(1), 193–203.

    Article  Google Scholar 

  • Nawaz, A., Farooq, M., Cheema, S. A., & Cheema, Z. A. (2014). Role of allelopathy in weed management. In Recent advances in weed management (pp. 39–61). New York, NY: Springer.

    Google Scholar 

  • Nirmal Kumar, J. I., Amb, M. K., & Bora, A. (2010). Chronic response of Anabaena fertilissima on growth, metabolites and enzymatic activities by chlorophenoxy herbicide. Pesticide Biochemistry and Physiology, 98(2), 168–174.

    Article  CAS  Google Scholar 

  • Ravlić, M., Baličević, R., Nikolić, M., & Sarajlić, A. (2016). Assessment of allelopathic potential of fennel, rue and sage on weed species hoary cress (Lepidium draba). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(1), 48–52.

    Article  Google Scholar 

  • Ravlić, M., Baličević, R., Visković, M., & Smolčić, I. (2017). Response of weed species on allelopathic potential of Aloe vera (L.) Burm. f. Herbologia, 16(2), 49–55.

    Google Scholar 

  • Rawat, L. S., Maikhuri, R. K., Bahuguna, Y. M., Jha, N. K., & Phondani, P. C. (2017). Sunflower allelopathy for weed control in agriculture systems. Journal of Crop Science and Biotechnology, 20(1), 45–46.

    Article  Google Scholar 

  • Rodino, S., Buțu, M., & Buțu, A. (2016). Comparative study on allelopathic potential of Petroselinum crispum (MILL.) FUSS. Analele Stiintifice ale Universitatii “Al. I. Cuza” din Iasi, 62(2), 35.

    Google Scholar 

  • Sturm, D. J., Peteinatos, G., & Gerhards, R. (2018). Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Research, 58(5), 331–337.

    Article  CAS  Google Scholar 

  • Tursun, N., IĆŸÄ±k, D., Demir, Z., & Jabran, K. (2018). Use of living, mowed, and soil-incorporated cover crops for weed control in apricot orchards. Agronomy, 8(8), 150.

    Article  CAS  Google Scholar 

  • Vyvyan, J. R. (2002). Allelochemicals as leads to herbicides and agrochemicals. Tetrahedron, 58, 1631–1646.

    Article  CAS  Google Scholar 

  • Wang, C. M., Li, T. C., Jhan, Y. L., Weng, J. H., & Chou, C. H. (2013). The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS One, 8(12), e85162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young, S. L., Meyer, G. E., & Woldt, W. E. (2014). Future directions for automated weed management in precision agriculture. In Automation: The future of weed control in cropping systems (pp. 249–259). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Zeng, R. S. (2014). Allelopathy-the solution is indirect. Journal of Chemical Ecology, 40(6), 515–516.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, S., Li, X., Ma, Y., & Yang, S. (2014). Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant and Soil, 378(1–2), 49–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mushtaq, W., Siddiqui, M.B., Hakeem, K.R. (2020). Allelopathic Control of Native Weeds. In: Allelopathy. SpringerBriefs in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-40807-7_6

Download citation

Publish with us

Policies and ethics