Skip to main content

Numerical Strategies for Solving Multiparameter Spectral Problems

  • Conference paper
  • First Online:
  • 638 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11974))

Abstract

We focus on the solution of multiparameter spectral problems, and in particular on some strategies to compute coarse approximations of selected eigenparameters depending on the number of oscillations of the associated eigenfunctions. Since the computation of the eigenparameters is crucial in codes for multiparameter problems based on finite differences, we herein present two strategies. The first one is an iterative algorithm computing solutions as limit of a set of decoupled problems (much easier to solve). The second one solves problems depending on a parameter \(\sigma \in [0,1]\), that give back the original problem only when \(\sigma =1\). We compare the strategies by using well known test problems with two and three parameters.

This research was supported by the project “Equazioni di Evoluzione: analisi qualitativa e metodi numerici” of the Università degli Studi di Bari.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In case of singular problem, the solution is not continuous at some endpoints but the strategies discussed below continue to work well.

References

  1. Abramov, A.A., Ul’yanova, V.I.: A method for solving selfadjoint multiparameter spectral problems for weakly coupled sets of ordinary differential equations. Comput. Math. Math. Phys. 37(5), 552–557 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: On the calculation of the finite Hankel transform eigenfunctions. J. Appl. Math. Comput. 43(1–2), 151–173 (2013). https://doi.org/10.1007/s12190-013-0657-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: Numerical simulation of the whispering gallery modes in prolate spheroids. Comput. Phys. Commun. 185(4), 1200–1206 (2014). https://doi.org/10.1016/j.cpc.2013.12.012

    Article  MathSciNet  MATH  Google Scholar 

  4. Amodio, P., Levitina, T., Settanni, G., Weinmüller, E.B.: Whispering gallery modes in oblate spheroidal cavities: calculations with a variable stepsize. In: Proceedings of the ICNAAM-2014, AIP Conference Proceedings, vol. 1648, p. 150019 (2015). https://doi.org/10.1063/1.4912449

  5. Amodio, P., Settanni, G.: A matrix method for the solution of Sturm-Liouville problems. JNAIAM. J. Numer. Anal. Ind. Appl. Math. 6(1–2), 1–13 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Amodio, P., Settanni, G.: A stepsize variation strategy for the solution of regular Sturm-Liouville problems. In: Simos, T.E., Psihoyios, G., Tsitouras, C., Anastassi, Z. (eds.) Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conference Proceedings, vol. 1389, pp. 1335–1338 (2011). https://doi.org/10.1063/1.3637866

  7. Amodio, P., Settanni, G.: A finite differences MATLAB code for the numerical solution of second order singular perturbation problems. J. Comput. Appl. Math. 236(16), 3869–3879 (2012). https://doi.org/10.1016/j.cam.2012.04.011

    Article  MathSciNet  MATH  Google Scholar 

  8. Amodio, P., Settanni, G.: Variable-step finite difference schemes for the solution of Sturm-Liouville problems. Commun. Nonlinear Sci. Numer. Simulat. 20(3), 641–649 (2015). https://doi.org/10.1016/j.cnsns.2014.05.032

    Article  MathSciNet  MATH  Google Scholar 

  9. Arscott, F.M.: Two-parameter eigenvalue problems in differential equations. Proc. London Math. Soc. 14(3), 459–470 (1964). https://doi.org/10.1112/plms/s3-14.3.459

    Article  MathSciNet  MATH  Google Scholar 

  10. Atkinson, F.V.: Multiparameter Eigenvalue Problems. Matrices and Compact Operators, vol. 1. Academic Press, New York (1972). Mathematics in Science and Engineering, vol. 82

    MATH  Google Scholar 

  11. Bailey, P.B.: The automatic solution of two-parameter Sturm-Liouville eigenvalue problems in ordinary differential equations. Appl. Math. Comput. 8(4), 251–259 (1981). https://doi.org/10.1016/0096-3003(81)90021-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Faierman, M.: On the distribution of the eigenvalues of a two-parameter system of ordinary differential equations of the second order. SIAM J. Math. Anal. 8(5), 854–870 (1977). https://doi.org/10.1137/0508065

    Article  MathSciNet  MATH  Google Scholar 

  13. Faierman, M.: Distribution of eigenvalues of a two-parameter system of differential equations. Trans. Amer. Math. Soc. 247, 86–145 (1979). https://doi.org/10.1090/S0002-9947-1979-0517686-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Gheorghiu, C.I., Hochstenbach, M.E., Plestenjak, B., Rommes, J.: Spectral collocation solutions to multiparameter Mathieu’s system. Appl. Math. Comput. 218(24), 11990–12000 (2012). https://doi.org/10.1016/j.amc.2012.05.068

    Article  MathSciNet  MATH  Google Scholar 

  15. Levitina, T.V.: A numerical solution to some three-parameter spectral problems. Comput. Math. Math. Phys. 39(11), 1715–1729 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Plestenjak, B., Gheorghiu, C.I., Hochstenbach, M.E.: Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems. J. Comput. Phys. 298, 585–601 (2015). https://doi.org/10.1016/j.jcp.2015.06.015

    Article  MathSciNet  MATH  Google Scholar 

  17. Sleeman, B.D.: Multi-parameter eigenvalue problems in ordinary differential equations. Bul. Inst. Politehn. Iaşi (N.S.) 17(21)(3–4, sect. I), 51–60 (1971)

    MathSciNet  MATH  Google Scholar 

  18. Sleeman, B.D.: The two parameter Sturm-Liouville problem for ordinary differential equations. Proc. Roy. Soc. Edinburgh, Sect. A 69(2), 139–148 (1971)

    MathSciNet  MATH  Google Scholar 

  19. Turyn, L.: Sturm-Liouville problems with several parameters. J. Differ. Equ. 38(2), 239–259 (1980). https://doi.org/10.1016/0022-0396(80)90007-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Amodio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amodio, P., Settanni, G. (2020). Numerical Strategies for Solving Multiparameter Spectral Problems. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics