Skip to main content

Physiology and Cardioprotection of the Epicardial Adipose Tissue

  • Chapter
  • First Online:
Book cover Epicardial Adipose Tissue

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Epicardial adipose tissue (EAT) is a peculiar visceral fat depot with both protective and detrimental properties. The physiological role of EAT within the heart is complex and not completely understood. EAT functions can be distinguished in (1) nutritional, (2) metabolic, (3) thermogenic, (4) regulatory, and (5) mechanical. Under normal physiological EAT serves as a buffer, absorbing fatty acids and protecting the heart against high fatty acids levels and as pad protecting abnormal curvature of the coronary arteries. EAT is enriched in genes coding for cardioprotective adipokines such as adiponectin and adrenomedullin, both with potential anti-inflammatory and anti-atherogenic properties. EAT could also function as local energy source at times of high demand, channeling fatty acids to the myocardium and as brown fat to defend the myocardium against hypothermia. EAT expresses genes and secretes cytokines actively involved in the thermogenesis and regulation of lipid and glucose metabolism of the adjacent myocardium. EAT may adapt itself to different metabolic circumstances and function as brown-like or beige fat depot as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990;14:1013–22.

    CAS  PubMed  Google Scholar 

  2. Vural B, Atalar F, Ciftci C, Demirkan A, Susleyici-Duman B, Gunay D. Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome. Cardiovasc Pathol. 2008;17:392–8.

    Article  CAS  PubMed  Google Scholar 

  3. Pezeshkian M, Mahtabipour MR. Epicardial and subcutaneous adipose tissue fatty acids profiles in diabetic and non-diabetic patients candidate for coronary artery bypass graft. Bioimpacts. 2013;3:83–9.

    PubMed  PubMed Central  Google Scholar 

  4. Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium; structure, foetal development and biochemical properties. Comp Biochem Physiol. 1989;94B:225–32.

    CAS  Google Scholar 

  5. Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22:450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536–43.

    Article  PubMed  Google Scholar 

  7. Judkin JS, Eringa E, Stehouwer CD. “Vasocrine signalling” from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365:1817–20.

    Article  Google Scholar 

  8. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–6.

    Article  PubMed  Google Scholar 

  9. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24:29–33. Review.

    Article  CAS  PubMed  Google Scholar 

  10. Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A, et al. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism. 2003;52:1274–8.

    Article  CAS  PubMed  Google Scholar 

  11. Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, Maerker E, et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res. 2003;11:368–72.

    Article  CAS  PubMed  Google Scholar 

  12. Iacobellis G, Barbaro G. The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Horm Metab Res. 2008;40:442–5.

    Article  CAS  PubMed  Google Scholar 

  13. Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with CAD. Cytokine. 2005;29:251–5.

    CAS  PubMed  Google Scholar 

  14. Iacobellis G, di Gioia CR, Cotesta D, Petramala L, Travaglini C, De Santis V, et al. Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin levels. Horm Metab Res. 2009;41:227–31.

    Article  CAS  PubMed  Google Scholar 

  15. Iacobellis G, Cotesta D, Petramala L, De Santis V, Vitale D, Tritapepe L, Letizia C. Intracoronary adiponectin levels rapidly and significantly increase after coronary revascularization. Int J Cardiol. 2010;144:160–3.

    Article  PubMed  Google Scholar 

  16. Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther. 2006;111:909–27.

    Article  CAS  PubMed  Google Scholar 

  17. Bunton DC, Petrie MC, Hillier C, Johnston F, McMurray JJV. The clinical relevance of adrenomedullin: a promising profile? Pharmacol Ther. 2004;103:179–201.

    Article  CAS  PubMed  Google Scholar 

  18. Yasu T, Nishikimi T, Kobayashi N, Ikeda N, Ueba H, Nakamura T, et al. Up-regulated synthesis of mature-type adrenomedullin in coronary circulation immediately after reperfusion in patients with anterior acute myocardial infarction. Regul Pept. 2005;129(1–3):161–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kobayashi K, Kitamura K, Hirayama N, Date H, Kashiwagi T, Ikushima I, et al. Increased plasma adrenomedullin in acute myocardial infarction. Am Heart J. 1996;131:676–80.

    Article  CAS  PubMed  Google Scholar 

  20. Hamid SA, Baxter GF. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J Mol Cell Cardiol. 2006;41:360–3.

    Article  CAS  PubMed  Google Scholar 

  21. Hojo Y, Uichi I, Katsuki T, Shimada K. Decreased adrenomedullin production in the coronary circulation of patients with coronary artery disease. Heart. 2000;84(1):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silaghi A, Achard V, Paulmyer-Lacroix O, Scridon T, Tassistro V, Duncea I, et al. Expression of adrenomedullin in human epicardial adipose tissue: role of coronary status. Am J Physiol Endocrinol Metab. 2007;293:E1443–50.

    Article  CAS  PubMed  Google Scholar 

  23. Fosshaug LE, Dahl CP, Risnes I, Bohov P, Berge RK, Nymo S, et al. Altered levels of fatty acids and inflammatory and metabolic mediators in epicardial adipose tissue in patients with systolic heart failure. J Card Fail. 2015;21:916–23.

    Article  CAS  PubMed  Google Scholar 

  24. Iacobellis G, di Goia CR, Di Vito M, Petramala L, Cotesta D, De Santis V, et al. Epicardial adipose tissue and intracoronary adrenomedullin levels in coronary artery disease. Horm Metab Res. 2009;41:855–60.

    Article  CAS  PubMed  Google Scholar 

  25. Fernández-Trasancos Á, Agra RM, García-Acuña JM, Fernández ÁL, González-Juanatey JR, Eiras S. Omentin treatment of epicardial fat improves its anti-inflammatory activity and paracrine benefit on smooth muscle cells. Obesity (Silver Spring). 2017;25:1042–9.

    Article  CAS  Google Scholar 

  26. Du Y, Ji Q, Cai L, Huang F, Lai Y, Liu Y, et al. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc Diabetol. 2016;15:90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Harada K, Shibata R, Ouchi N, Tokuda Y, Funakubo H, Suzuki M, et al. Increased expression of the adipocytokine omentin in the epicardial adipose tissue of coronary artery disease patients. Atherosclerosis. 2016;251:299–304.

    Article  CAS  PubMed  Google Scholar 

  28. Matloch Z, Kratochvílová H, Cinkajzlová A, Lipš M, Kopecký P, Pořízka M, et al. Changes in omentin levels and its mRNA expression in epicardial adipose tissue in patients undergoing elective cardiac surgery: the influence of type 2 diabetes and coronary heart disease. Physiol Res. 2018;67:881–90.

    Article  CAS  PubMed  Google Scholar 

  29. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52.

    Article  CAS  PubMed  Google Scholar 

  30. Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iacobellis G, Di Gioia C, Petramala L, Chiappetta C, Serra V, Zinnamosca L, et al. Brown fat expresses adiponectin in humans. Int J Endocrinol. 2013;2013:126751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907–17.

    Article  CAS  PubMed  Google Scholar 

  34. Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F. Uncoupling protein-1 and related mRNAs in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94:3611–5.

    Article  CAS  PubMed  Google Scholar 

  35. Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H, et al. Human epicardial fat exhibits beige features. J Clin Endocrinol Metab. 2013;98:E1448–55.

    Article  CAS  PubMed  Google Scholar 

  36. Ojha S, Fainberg HP, Wilson V, Pelella G, Castellanos M, May ST, et al. Gene pathway development in human epicardial adipose tissue during early life. JCI Insight. 2016;1:e87460.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fainberg HP, Birtwistle M, Alagal R, Alhaddad A, Pope M, Davies G, et al. Transcriptional analysis of adipose tissue during development reveals depot-specific responsiveness to maternal dietary supplementation. Sci Rep. 2018;8:9628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McAninch EA, Fonseca TL, Poggioli R, Panos AL, Salerno TA, Deng Y, et al. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity. 2015;23:1267–78.

    Article  CAS  PubMed  Google Scholar 

  39. Singh SP, McClung JA, Thompson E, Glick Y, Greenberg M, Acosta-Baez G, et al. Cardioprotective effect of heme oxygenase-1-PGC-1α signaling in epicardial fat attenuates cardiovascular risk in humans as in obese mice. Obesity (Silver Spring). 2019;27:1634–43.

    Article  CAS  Google Scholar 

  40. Svensson PA, Jernas M, Sjoholm K, Hoffmann JM, Nilsson BE, Hansson M, et al. Gene expression in human brown adipose tissue. Int J Mol Med. 2011;27:227–32.

    Article  CAS  PubMed  Google Scholar 

  41. Chechi K, Vijay J, Voisine P, Mathieu P, Bossé Y, Tchernof A, et al. UCP1 expression-associated gene signatures of human epicardial adipose tissue. JCI Insight. 2019;4:e123618.

    Article  PubMed Central  Google Scholar 

  42. Regan SE, Broad M, Byford AM, Lankford AR, Cerniway RJ, Mayo MW, et al. A1 adenosine receptor overexpression attenuates ischemia-reperfusion-induced apoptosis and caspase 3 activity. Am J Physiol Heart Circ Physiol. 2003;284:H859–66.

    Article  CAS  PubMed  Google Scholar 

  43. Prati F, Arbustini E, Labellarte A, Sommariva L, Pawlowski T, Manzoli A, et al. Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur Heart J. 2003;24:329–36.

    Article  CAS  PubMed  Google Scholar 

  44. Fei J, Cook C, Blough E, Santanam N. Age and sex mediated changes in epicardial fat adipokines. Atherosclerosis. 2010;212:488–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kocher C, Christiansen M, Martin S, Adams C, Wehner P, Gress T, Santanam N. Sexual dimorphism in obesity-related genes in the epicardial fat during aging. J Physiol Biochem. 2017;73:215–24.

    Article  CAS  PubMed  Google Scholar 

  46. Richards EM, McElhaney E, Zeringue K, Joseph S, Keller-Wood M. Transcriptomic evidence that cortisol alters perinatal epicardial adipose tissue maturation. Am J Physiol Endocrinol Metab. 2019;317:E573–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Iacobellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iacobellis, G. (2020). Physiology and Cardioprotection of the Epicardial Adipose Tissue. In: Iacobellis, G. (eds) Epicardial Adipose Tissue. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-40570-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40570-0_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-40569-4

  • Online ISBN: 978-3-030-40570-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics